Automatic Fuzzy Rules Generation Using Fuzzy Genetic Algorithm

To solve the problem which is hard to avoid the local optimal solution or slower population diversity when using genetic algorithm to generate the fuzzy rules in a fuzzy system, this paper proposes an automatic rule generation using fuzzy genetic algorithm. This algorithm utilizes the rules population diversity and evolutionary speed to automatically adjust the crossover rate and mutation rate based on fuzzy logic, which leads to the automatic control rules generation of a genetic fuzzy system. In addition, the performance indices of control system and how to evaluate the fitness function in genetic algorithm are also presented. Finally, simulation results demonstrate the proposed algorithm is practical and effective in applications.

[1]  Sanza T. Kazadi,et al.  Conjugate Schema and Basis Representation of Crossover and Mutation Operators , 1998, Evolutionary Computation.

[2]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[3]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[4]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[5]  Lipo Wang,et al.  Rule extraction by genetic algorithms based on a simplified RBF neural network , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[6]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[7]  A S Wu,et al.  Introduction to the special issue: variable-length representation and noncoding segments for evolutionary algorithms. , 1998, Evolutionary computation.

[8]  Kejun Wang,et al.  A new fuzzy genetic algorithm based on population diversity , 2001, Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515).

[9]  Zhang Yi,et al.  Fuzzy logic controller based on genetic algorithms , 1996, Fuzzy Sets Syst..

[10]  Francesco Battaglia,et al.  Evolutionary Computing in Statistical Data Analysis , 2009, Foundations of Computational Intelligence.

[11]  Edmund K. Burke,et al.  Initialization Strategies and Diversity in Evolutionary Timetabling , 1998, Evolutionary Computation.

[12]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[13]  Yo-Ping Huang,et al.  Using Fuzzy Adaptive Genetic Algorithm for Function Optimization , 2006, NAFIPS 2006 - 2006 Annual Meeting of the North American Fuzzy Information Processing Society.

[14]  Peter Ross,et al.  Adapting Operator Settings in Genetic Algorithms , 1998, Evolutionary Computation.

[15]  M.A. Lee,et al.  Integrating design stage of fuzzy systems using genetic algorithms , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[16]  B. H. Gwee,et al.  A GA paradigm for learning fuzzy rules , 1996, Fuzzy Sets Syst..

[17]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[18]  Annie S. Wu,et al.  Introduction to the Special Issue: Variable-Length Representation and Noncoding Segments for Evolutionary Algorithms , 1998, Evolutionary Computation.

[19]  Zhang Jun New method of fuzzy-based genetic algorithms , 2008 .

[20]  H. Takagi,et al.  Integrating Design Stages of Fuzzy Systems using Genetic Algorithms 1 , 1993 .

[21]  Tanja Urbancic,et al.  Genetic algorithms in controller design and tuning , 1993, IEEE Trans. Syst. Man Cybern..

[22]  Sankar K. Pal,et al.  Rough-Fuzzy MLP: Modular Evolution, Rule Generation, and Evaluation , 2003, IEEE Trans. Knowl. Data Eng..

[23]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[25]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .