Optimization and Sampling Under Continuous Symmetry: Examples and Lie Theory

In the last few years, the notion of symmetry has provided a powerful and essential lens to view several optimization or sampling problems that arise in areas such as theoretical computer science, statistics, machine learning, quantum inference, and privacy. Here, we present two examples of nonconvex problems in optimization and sampling where continuous symmetries play – implicitly or explicitly – a key role in the development of efficient algorithms. These examples rely on deep and hidden connections between nonconvex symmetric manifolds and convex polytopes, and are heavily generalizable. To formulate and understand these generalizations, we then present an introduction to Lie theory – an indispensable mathematical toolkit for capturing and working with continuous symmetries. We first present the basics of Lie groups, Lie algebras, and the adjoint actions associated with them, and we also mention the classification theorem for Lie algebras. Subsequently, we present Kostant’s convexity theorem and show how it allows us to reduce linear optimization problems over orbits of Lie groups to linear optimization problems over polytopes. Finally, we present the Harish-Chandra and the Harish-Chandra–Itzykson– Zuber (HCIZ) formulas, which convert partition functions (integrals) over Lie groups into sums over the corresponding (discrete) Weyl groups, enabling efficient sampling algorithms.

[1]  M Vergne Convex polytopes and quantization of symplectic manifolds. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Vladimir Kazakov,et al.  The ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents , 1987 .

[3]  Harish-Chandra Differential Operators on a Semisimple Lie Algebra , 1957 .

[4]  On the Kostant convexity theorem , 1992 .

[5]  Peter Bürgisser,et al.  Towards a Theory of Non-Commutative Optimization: Geodesic 1st and 2nd Order Methods for Moment Maps and Polytopes , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[6]  A. Guionnet Large deviations and stochastic calculus for large random matrices , 2004, math/0409277.

[7]  Kunal Talwar,et al.  Mechanism Design via Differential Privacy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[8]  Nisheeth K. Vishnoi,et al.  On Geodesically Convex Formulations for the Brascamp-Lieb Constant , 2018, APPROX-RANDOM.

[9]  Pablo A. Parrilo,et al.  Semidefinite Descriptions of the Convex Hull of Rotation Matrices , 2014, SIAM J. Optim..

[10]  Y. Chikuse Concentrated matrix Langevin distributions , 2003 .

[11]  Levent Tunçel,et al.  Characterization of the barrier parameter of homogeneous convex cones , 1998, Math. Program..

[12]  Sébastien Bubeck,et al.  The entropic barrier: a simple and optimal universal self-concordant barrier , 2014, COLT.

[13]  Nisheeth K. Vishnoi,et al.  On the Computability of Continuous Maximum Entropy Distributions: Adjoint Orbits of Lie Groups , 2020, ArXiv.

[14]  A. Kirillov Lectures on the Orbit Method , 2004 .

[15]  Nisheeth K. Vishnoi,et al.  On the computability of continuous maximum entropy distributions with applications , 2020, STOC.

[16]  A New Proof of Harish-Chandra’s Integral Formula , 2017, Communications in Mathematical Physics.

[17]  B. L. Waerden,et al.  Algebraischer Beweis der vollständigen Reduzibilität der Darstellungen halbeinfacher Liescher Gruppen , 1935 .

[18]  D. Gross,et al.  The role of symmetry in fundamental physics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups , 2006, math-ph/0610049.

[20]  D. Pinasco Lower bounds for norms of products of polynomials via Bombieri inequality , 2012 .

[21]  P. Slater Relations between the barycentric and von Neumann entropies of a density matrix , 1991 .

[22]  Frances Kirwan,et al.  Convexity properties of the moment mapping, III , 1984 .

[23]  Avi Wigderson,et al.  Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2016, Geometric and Functional Analysis.

[24]  Avi Wigderson,et al.  Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing , 2018, STOC.

[25]  William C. Waterhouse,et al.  Do Symmetric Problems Have Symmetric Solutions , 1983 .

[26]  Wilhelm Killing,et al.  Die Zusammensetzung der stetigen endlichen Transformationsgruppen , 1888 .

[27]  Jacques Faraut,et al.  Rayleigh theorem, projection of orbital measures and spline functions , 2015 .

[28]  A. Horn Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .

[29]  E. Cartan,et al.  La théorie des groupes finis et continus et l'Analysis situs , 1952 .

[30]  Samson L. Shatashvili Correlation functions in the Itzykson-Zuber model , 1993 .

[31]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[32]  B. Kostant On convexity, the Weyl group and the Iwasawa decomposition , 1973 .

[33]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[34]  Harish-Chandra On some applications of the universal enveloping algebra of a semisimple Lie algebra , 1951 .

[35]  Michael Atiyah,et al.  Convexity and Commuting Hamiltonians , 1982 .

[36]  B. Klartag On convex perturbations with a bounded isotropic constant , 2006 .

[37]  Kunal Talwar,et al.  On differentially private low rank approximation , 2013, SODA.

[38]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[39]  William Band,et al.  New information-theoretic foundations for quantum statistics , 1976 .

[40]  Vladimir Kazakov,et al.  Ising model on a dynamical planar random lattice: Exact solution , 1986 .

[41]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[42]  Tim Kobert Spectrahedral and semidefinite representability of orbitopes , 2019 .

[43]  D. Rowe Emergence of the Theory of Lie Groups : An Essay in the History of Mathematics , 1869 – 1926 , 2003 .

[44]  R. Kadison,et al.  The Pythagorean Theorem: I. The finite case , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Chern,et al.  Élie Cartan and his mathematical work , 1952 .

[46]  R. Gilmore Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists , 2008 .

[47]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[48]  S. Sternberg,et al.  Convexity properties of the moment mapping , 1982 .

[49]  Sampling matrices from Harish-Chandra–Itzykson–Zuber densities with applications to Quantum inference and differential privacy , 2021, STOC.

[50]  B. Eynard,et al.  2-Matrix versus Complex Matrix Model, Integrals over the Unitary Group as Triangular Integrals , 2005, hep-th/0502041.

[51]  A. Baker Matrix Groups: An Introduction to Lie Group Theory , 2003 .

[52]  Service de Physique Theorique de Saclay , 1992 .

[53]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[54]  Anand D. Sarwate,et al.  Near-optimal Differentially Private Principal Components , 2012, NIPS.

[55]  Jean-Pierre Serre,et al.  Complex Semisimple Lie Algebras , 1987 .

[56]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[57]  Osman Güler On the Self-Concordance of the Universal Barrier Function , 1997, SIAM J. Optim..

[58]  A. Morozov PAIR CORRELATOR IN THE ITZYKSON-ZUBER INTEGRAL , 1992 .