暂无分享,去创建一个
[1] M Vergne. Convex polytopes and quantization of symplectic manifolds. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[2] Vladimir Kazakov,et al. The ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents , 1987 .
[3] Harish-Chandra. Differential Operators on a Semisimple Lie Algebra , 1957 .
[4] On the Kostant convexity theorem , 1992 .
[5] Peter Bürgisser,et al. Towards a Theory of Non-Commutative Optimization: Geodesic 1st and 2nd Order Methods for Moment Maps and Polytopes , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).
[6] A. Guionnet. Large deviations and stochastic calculus for large random matrices , 2004, math/0409277.
[7] Kunal Talwar,et al. Mechanism Design via Differential Privacy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[8] Nisheeth K. Vishnoi,et al. On Geodesically Convex Formulations for the Brascamp-Lieb Constant , 2018, APPROX-RANDOM.
[9] Pablo A. Parrilo,et al. Semidefinite Descriptions of the Convex Hull of Rotation Matrices , 2014, SIAM J. Optim..
[10] Y. Chikuse. Concentrated matrix Langevin distributions , 2003 .
[11] Levent Tunçel,et al. Characterization of the barrier parameter of homogeneous convex cones , 1998, Math. Program..
[12] Sébastien Bubeck,et al. The entropic barrier: a simple and optimal universal self-concordant barrier , 2014, COLT.
[13] Nisheeth K. Vishnoi,et al. On the Computability of Continuous Maximum Entropy Distributions: Adjoint Orbits of Lie Groups , 2020, ArXiv.
[14] A. Kirillov. Lectures on the Orbit Method , 2004 .
[15] Nisheeth K. Vishnoi,et al. On the computability of continuous maximum entropy distributions with applications , 2020, STOC.
[16] A New Proof of Harish-Chandra’s Integral Formula , 2017, Communications in Mathematical Physics.
[17] B. L. Waerden,et al. Algebraischer Beweis der vollständigen Reduzibilität der Darstellungen halbeinfacher Liescher Gruppen , 1935 .
[18] D. Gross,et al. The role of symmetry in fundamental physics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[19] Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups , 2006, math-ph/0610049.
[20] D. Pinasco. Lower bounds for norms of products of polynomials via Bombieri inequality , 2012 .
[21] P. Slater. Relations between the barycentric and von Neumann entropies of a density matrix , 1991 .
[22] Frances Kirwan,et al. Convexity properties of the moment mapping, III , 1984 .
[23] Avi Wigderson,et al. Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2016, Geometric and Functional Analysis.
[24] Avi Wigderson,et al. Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing , 2018, STOC.
[25] William C. Waterhouse,et al. Do Symmetric Problems Have Symmetric Solutions , 1983 .
[26] Wilhelm Killing,et al. Die Zusammensetzung der stetigen endlichen Transformationsgruppen , 1888 .
[27] Jacques Faraut,et al. Rayleigh theorem, projection of orbital measures and spline functions , 2015 .
[28] A. Horn. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .
[29] E. Cartan,et al. La théorie des groupes finis et continus et l'Analysis situs , 1952 .
[30] Samson L. Shatashvili. Correlation functions in the Itzykson-Zuber model , 1993 .
[31] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[32] B. Kostant. On convexity, the Weyl group and the Iwasawa decomposition , 1973 .
[33] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[34] Harish-Chandra. On some applications of the universal enveloping algebra of a semisimple Lie algebra , 1951 .
[35] Michael Atiyah,et al. Convexity and Commuting Hamiltonians , 1982 .
[36] B. Klartag. On convex perturbations with a bounded isotropic constant , 2006 .
[37] Kunal Talwar,et al. On differentially private low rank approximation , 2013, SODA.
[38] Mark Jerrum,et al. Approximating the Permanent , 1989, SIAM J. Comput..
[39] William Band,et al. New information-theoretic foundations for quantum statistics , 1976 .
[40] Vladimir Kazakov,et al. Ising model on a dynamical planar random lattice: Exact solution , 1986 .
[41] Tomás Feder,et al. Balanced matroids , 1992, STOC '92.
[42] Tim Kobert. Spectrahedral and semidefinite representability of orbitopes , 2019 .
[43] D. Rowe. Emergence of the Theory of Lie Groups : An Essay in the History of Mathematics , 1869 – 1926 , 2003 .
[44] R. Kadison,et al. The Pythagorean Theorem: I. The finite case , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[45] S. Chern,et al. Élie Cartan and his mathematical work , 1952 .
[46] R. Gilmore. Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists , 2008 .
[47] A. W. Knapp. Lie groups beyond an introduction , 1988 .
[48] S. Sternberg,et al. Convexity properties of the moment mapping , 1982 .
[49] Sampling matrices from Harish-Chandra–Itzykson–Zuber densities with applications to Quantum inference and differential privacy , 2021, STOC.
[50] B. Eynard,et al. 2-Matrix versus Complex Matrix Model, Integrals over the Unitary Group as Triangular Integrals , 2005, hep-th/0502041.
[51] A. Baker. Matrix Groups: An Introduction to Lie Group Theory , 2003 .
[52] Service de Physique Theorique de Saclay , 1992 .
[53] C. Itzykson,et al. The planar approximation. II , 1980 .
[54] Anand D. Sarwate,et al. Near-optimal Differentially Private Principal Components , 2012, NIPS.
[55] Jean-Pierre Serre,et al. Complex Semisimple Lie Algebras , 1987 .
[56] Avi Wigderson,et al. A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[57] Osman Güler. On the Self-Concordance of the Universal Barrier Function , 1997, SIAM J. Optim..
[58] A. Morozov. PAIR CORRELATOR IN THE ITZYKSON-ZUBER INTEGRAL , 1992 .