An Improvement on the Gilbert–Varshamov Bound for Permutation Codes

Permutation codes have been shown to be useful in power line communications, block ciphers, and multilevel flash memory models. Construction of such codes is extremely difficult. In fact, the only general lower bound known is the Gilbert-Varshamov type bound. In this paper, we establish a connection between permutation codes and independent sets in certain graphs. Using the connection, we improve the Gilbert-Varshamov bound asymptotically by a factor log(n), when the code length n goes to infinity.

[1]  Peter Frankl,et al.  On the Maximum Number of Permutations with Given Maximal or Minimal Distance , 1977, J. Comb. Theory, Ser. A.

[2]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[3]  P. Dukes,et al.  Bounds on permutation codes of distance four , 2010 .

[4]  Lei Wu,et al.  Improving the Gilbert-Varshamov bound for q-ary codes , 2005, IEEE Transactions on Information Theory.

[5]  Roberto Montemanni,et al.  A new table of permutation codes , 2012, Des. Codes Cryptogr..

[6]  Torleiv Kløve,et al.  Permutation Arrays Under the Chebyshev Distance , 2009, IEEE Transactions on Information Theory.

[7]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[8]  Charles J. Colbourn,et al.  An Application of Permutation Arrays to Block Ciphers , 2007 .

[9]  Cecil C. Rousseau,et al.  Asymptotic Upper Bounds for Ramsey Functions , 2001, Graphs Comb..

[10]  Alexander Vardy,et al.  Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes , 2004, IEEE Transactions on Information Theory.

[11]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..

[12]  Anxiao Jiang,et al.  Error-correcting codes for rank modulation , 2008, 2008 IEEE International Symposium on Information Theory.

[13]  Torleiv Kløve,et al.  Permutation arrays for powerline communication and mutually orthogonal latin squares , 2004, IEEE Transactions on Information Theory.

[14]  Yusheng Li,et al.  On Book-Complete Graph Ramsey Numbers , 1996, J. Comb. Theory, Ser. B.

[15]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[16]  Anxiao Jiang,et al.  Rank modulation for flash memories , 2008, 2008 IEEE International Symposium on Information Theory.

[17]  Torleiv Kløve,et al.  Lower bounds on the size of spheres of permutations under the Chebychev distance , 2011, Des. Codes Cryptogr..

[18]  Torleiv Kløve,et al.  Two constructions of permutation arrays , 2004, IEEE Transactions on Information Theory.

[19]  Bahram Honary,et al.  Power line communications: state of the art and future trends , 2003, IEEE Commun. Mag..

[20]  H. C. Ferreira,et al.  Interference cancellation with permutation trellis codes , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[21]  Michel Deza,et al.  Bounds for permutation arrays , 1978 .

[22]  Cunsheng Ding,et al.  Constructions of permutation arrays , 2002, IEEE Trans. Inf. Theory.