A powder metallurgy approach to liquid metal dealloying with applications in additive manufacturing

[1]  I. McCue,et al.  How Can We Efficiently Fabricate Nanostructured Materials with Unprecedented Properties? , 2021, Accounts of Materials Research.

[2]  C. Yan,et al.  3D Printing and Chemical Dealloying of a Hierarchically Micro- and Nanoporous Catalyst for Wastewater Purification. , 2021, ACS applied materials & interfaces.

[3]  T. Wada,et al.  Beyond strength-ductility trade-off: 3D interconnected heterostructured composites by liquid metal dealloying , 2021, Composites Part B: Engineering.

[4]  J. Erlebacher,et al.  Porous graphite fabricated by liquid metal dealloying of silicon carbide , 2020 .

[5]  M. Demkowicz,et al.  The Effect of Microstructure Morphology on Indentation Response of Ta/Ti Nanocomposite Thin Films , 2020, Metallurgical and Materials Transactions A.

[6]  A Chuang,et al.  Challenges and Opportunities for Integrating Dealloying Methods into Additive Manufacturing , 2020, Materials.

[7]  M. Qian,et al.  Liquid metal dealloying of titanium-tantalum (Ti-Ta) alloy to fabricate ultrafine Ta ligament structures: A comparative study in molten copper (Cu) and Cu-based alloys , 2020, Corrosion Science.

[8]  L. Lian,et al.  A novel solid-state dealloying method to prepare ultrafine ligament nanoporous Ti , 2019, Applied Physics A.

[9]  N. Nomura,et al.  Hierarchical Nanoporous Copper Architectures via 3D Printing Technique for Highly Efficient Catalysts. , 2019, Small.

[10]  I. Soldatov,et al.  Anomalously low modulus of the interpenetrating-phase composite of Fe and Mg obtained by liquid metal dealloying , 2019, Scripta Materialia.

[11]  J. Erlebacher,et al.  Self-assembled porous metal-intermetallic nanocomposites via liquid metal dealloying , 2019, Acta Materialia.

[12]  J. Markmann,et al.  Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters , 2018, Scripta Materialia.

[13]  Juergen Biener,et al.  Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing , 2018, Science Advances.

[14]  A. Karma,et al.  Pattern formation during electrochemical and liquid metal dealloying , 2018 .

[15]  T. Wada,et al.  Preparation of hierarchical porous metals by two-step liquid metal dealloying , 2018 .

[16]  P. Cao,et al.  High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol , 2018 .

[17]  Mitsuhiro Murayama,et al.  AQUAMI: An open source Python package and GUI for the automatic quantitative analysis of morphologically complex multiphase materials , 2017 .

[18]  G. Adamek Tantalum foams prepared by the thermal dealloying process , 2017 .

[19]  G. Dai,et al.  Fabrication, formation mechanism and properties of three-dimensional nanoporous titanium dealloyed in metallic powders , 2017 .

[20]  J. Erlebacher,et al.  Local heterogeneity in the mechanical properties of bicontinuous composites made by liquid metal dealloying , 2016 .

[21]  A. Karma,et al.  Kinetics and morphological evolution of liquid metal dealloying , 2016 .

[22]  J. Erlebacher,et al.  Dealloying and Dealloyed Materials , 2016 .

[23]  J. Erlebacher,et al.  Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying , 2016 .

[24]  A. Karma,et al.  Topology-generating interfacial pattern formation during liquid metal dealloying , 2015, Nature Communications.

[25]  Jaafar A. El-Awady,et al.  Unravelling the physics of size-dependent dislocation-mediated plasticity , 2015, Nature Communications.

[26]  T. Wada,et al.  Sub-micron porous niobium solid electrolytic capacitor prepared by dealloying in a metallic melt , 2014 .

[27]  A. Hodge,et al.  Strength scale behavior of nanoporous Ag, Pd and Cu foams , 2013 .

[28]  T. Wada,et al.  Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel , 2013 .

[29]  P. Voorhees,et al.  Structural evolution of nanoporous gold during thermal coarsening , 2012 .

[30]  Xuanxuan Bi,et al.  Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts , 2012 .

[31]  J. Erlebacher,et al.  Mechanism of coarsening and bubble formation in high-genus nanoporous metals. , 2011, Physical review letters.

[32]  T. Wada,et al.  Dealloying by metallic melt , 2011 .

[33]  J. Erlebacher,et al.  Hard Materials with Tunable Porosity , 2009 .

[34]  Y. Ivanisenko,et al.  Deforming nanoporous metal: Role of lattice coherency , 2009 .

[35]  Mingwei Chen,et al.  Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation , 2007 .

[36]  J. Erlebacher,et al.  Platinum-plated nanoporous gold : An efficient, low Pt loading electrocatalyst for PEM fuel cells , 2007 .

[37]  M. Bäumer,et al.  Gold catalysts: nanoporous gold foams. , 2006, Angewandte Chemie.

[38]  L. Zepeda-Ruiz,et al.  Size effects on the mechanical behavior of nanoporous Au. , 2006, Nano letters.

[39]  Cynthia A. Volkert,et al.  Approaching the theoretical strength in nanoporous Au , 2006 .

[40]  Jonah Erlebacher,et al.  Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material , 2004 .

[41]  J. Erlebacher An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior , 2004 .

[42]  J. Erlebacher,et al.  Metallic mesoporous nanocomposites for electrocatalysis. , 2004, Journal of the American Chemical Society.

[43]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[44]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[45]  Li,et al.  Ductile-brittle transition in random porous Au. , 1992, Physical review letters.

[46]  M. Drechsler,et al.  A measurement of the surface self-diffusion of tantalum , 1981 .

[47]  J. Wang,et al.  The activation energy for surface self-diffusion of tantalum and the influence of residual gases on this quantity in the presence of high electric fields , 1974 .