Abstract Economics and finance are extremely complex nonlinear systems involving human subjects with many subjective factors. There are numerous attribute properties that cannot be described by the theory of integer-order calculus; so it is necessary to theoretically study the internal complexity of the economic and financial system using the method of bifurcation and chaos of fractional nonlinear dynamics. Fractional calculus can more accurately describe the existence characteristics of complex physical, financial or medical systems, and can truly reflect the actual state properties of these systems; therefore the application of fractional order in chaotic systems has great significance to study the mathematical analysis of nonlinear dynamic systems, and the use of fractional calculus theory to model the complexity evolution of fractional chaotic financial systems has attracted more and more scholars’ attention. On the basis of summarizing and analyzing previous studies, this paper qualitatively analyzes the stability of equilibrium solution of fractional-order chaotic financial system, and explores the complexity evolution law of the financial system near the equilibrium point and the occurring conditions of asymptotic chaotic state near this equilibrium point, and simulate the complexity evolution of chaotic financial systems using the Admas-Bashforth-Moulton finite difference method for mapping, phase diagram and time series graph. The research results of this paper provide a reference for government to formulate relevant economic policies, decision-making or further research on the complexity evolution of fractional-order chaotic financial systems.
[1]
Qilin Liu,et al.
Global Regularity for a 2D Model of Electro-Kinetic Fluid in a Bounded Domain
,
2018
.
[2]
Dengqing Cao,et al.
Boundary value problems for fractional differential equation with causal operators
,
2016
.
[3]
Zhang Ruo-Xun,et al.
Synchronization of fractional-order unified chaotic system via linear control
,
2010
.
[4]
Ma Junhai,et al.
Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I)
,
2001
.
[5]
Shen Chun-hua.
A Commentary on Research about Complexity of Financial System
,
2008
.
[6]
Clara Burgos Simón,et al.
Mean square calculus and random linear fractional differential equations: Theory and applications
,
2017
.