Chrysin Pretreatment Improves Angiotensin System, cGMP Concentration in L-NAME Induced Hypertensive Rats

[1]  H. Westerblad,et al.  Dietary nitrate improves cardiac contractility via enhanced cellular Ca2+ signaling , 2016, Basic Research in Cardiology.

[2]  S. Rajagopal,et al.  Chrysin Ameliorates the Lipid Profiles in Nω-nitro-l-arginine-methylester-induced Hypertensive Rats , 2016 .

[3]  M. Tate,et al.  Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages , 2015, Basic Research in Cardiology.

[4]  Y. Kamisah,et al.  Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats , 2015, Clinics.

[5]  R. Senthilkumar,et al.  Chrysin enhances antioxidants and oxidative stress in L-NAME-induced hypertensive rats , 2015 .

[6]  G. Archunan,et al.  Effects on chrysin on lipid and xenobiotic metabolizing enzymes in l-NAME-induced hypertension , 2014 .

[7]  M. Tanira,et al.  Prehypertension: Underlying pathology and therapeutic options. , 2014, World journal of cardiology.

[8]  B. Raja,et al.  Valproic acid prevents the deregulation of lipid metabolism and renal renin-angiotensin system in L-NAME induced nitric oxide deficient hypertensive rats. , 2014, Environmental toxicology and pharmacology.

[9]  T. Malarvili,et al.  Effects of chrysin on free radicals and enzymatic antioxidants in Nω-nitro-l-arginine methyl ester: Induced hypertensive rats , 2014 .

[10]  V. Ramanathan,et al.  Role of chrysin on hepatic and renal activities of Nω-nitro-l-arginine-methylester induced hypertensive rats , 2014 .

[11]  D. Sharma,et al.  Novel diallyldisulfide analogs ameliorate cardiovascular remodeling in rats with L-NAME-induced hypertension. , 2012, European journal of pharmacology.

[12]  M. Bilge,et al.  Percutaneous renal denervation in patients with resistant hypertension-first experiences in Turkey. , 2012, Anadolu kardiyoloji dergisi : AKD = the Anatolian journal of cardiology.

[13]  C. Saldanha,et al.  Hemorheological Effects of Valsartan in L-NAME Induced Hypertension in Rats , 2011 .

[14]  W. Durante Targeting heme oxygenase-1 in vascular disease. , 2010, Current drug targets.

[15]  E. Kohner,et al.  NADPH Oxidase versus Mitochondria-Derived ROS in Glucose-Induced Apoptosis of Pericytes in Early Diabetic Retinopathy , 2010, Journal of ophthalmology.

[16]  P. Geraldine,et al.  In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus , 2009 .

[17]  M. Ibarra-Barajas,et al.  Angiotensin II augments renal vasoconstriction via AT1 receptors in L-NAME-induced hypertensive rats. , 2009, Proceedings of the Western Pharmacology Society.

[18]  J. Tanus-Santos,et al.  [Role of nitric oxide in the control of the pulmonary circulation: physiological, pathophysiological, and therapeutic implications]. , 2008, Jornal brasileiro de pneumologia : publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia.

[19]  D. Ganten,et al.  Update on tissue renin–angiotensin systems , 2008, Journal of Molecular Medicine.

[20]  H. Sasamura,et al.  Developmental Activity of the Renin-Angiotensin System during the “Critical Period” Modulates Later L-NAME–Induced Hypertension and Renal Injury , 2007, Hypertension Research.

[21]  Jawed Alam,et al.  Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. , 2006, Physiological reviews.

[22]  C. Adin,et al.  Products of heme oxygenase and their potential therapeutic applications. , 2006, American journal of physiology. Renal physiology.

[23]  S. Moncada,et al.  The discovery of nitric oxide and its role in vascular biology , 2006, British journal of pharmacology.

[24]  A. Fenning,et al.  l-Arginine attenuates cardiovascular impairment in DOCA-salt hypertensive rats. , 2005, American journal of physiology. Heart and circulatory physiology.

[25]  Takahiro Shimizu,et al.  Calcium Channel Blockades Exhibit Anti-Inflammatory and Antioxidative Effects by Augmentation of Endothelial Nitric Oxide Synthase and the Inhibition of Angiotensin Converting Enzyme in the NG-Nitro-L-Arginine Methyl Ester-Induced Hypertensive Rat Aorta: Vasoprotective Effects beyond the Blood Press , 2005, Hypertension Research.

[26]  Arantxa González,et al.  Mechanisms of Disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease , 2005, Nature Clinical Practice Cardiovascular Medicine.

[27]  A. Vaandrager,et al.  Signalling by cGMP-dependent protein kinases , 1996, Molecular and Cellular Biochemistry.

[28]  S. Kim,et al.  Upregulation of vascular renin-angiotensin and endothelin systems in rats inhibited of nitric oxide synthesis. , 2002, Pharmacological research.

[29]  K. Weber,et al.  Cardiac Fibrosis as a Cause of Diastolic Dysfunction , 2002, Herz.

[30]  C. Rice-Evans,et al.  Flavonoid antioxidants. , 2001, Current medicinal chemistry.

[31]  S. Waldman,et al.  Guanylyl cyclases and signaling by cyclic GMP. , 2000, Pharmacological reviews.

[32]  P. Renard,et al.  A convenient extension of the Wessely-Moser rearrangement for the synthesis of substituted alkylaminoflavones as neuroprotective agents in vitro. , 2000, Bioorganic & medicinal chemistry letters.

[33]  P. Fuller,et al.  Mineralocorticoid action , 2000, Steroids.

[34]  T. Koike,et al.  Effects of Chronic Nitric Oxide Synthase Inhibition on Renal Function and Histology in Polycythemic Rats , 1998, Kidney and Blood Pressure Research.

[35]  J. Harborne,et al.  Chrysin and other leaf exudate flavonoids in the genus Pelargonium. , 1997, Phytochemistry.

[36]  A. Edwards The pharmacology of inhaled nitric oxide. , 1995, Archives of disease in childhood. Fetal and neonatal edition.

[37]  A. Deng,et al.  Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. , 1992, The Journal of clinical investigation.