An Ideal Convergence

[1]  Hanfeng Li,et al.  On Gromov-Hausdorff convergence for operator metric spaces , 2004, math/0411157.

[2]  M. Rieffel Matricial bridges for "Matrix algebras converge to the sphere" , 2015, 1502.00329.

[3]  Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance , 2001, math/0108005.

[4]  F. Latrémolière Quantum Metric Spaces and the Gromov-Hausdorff Propinquity , 2015, 1506.04341.

[5]  JENS KAAD,et al.  Dynamics of compact quantum metric spaces , 2019, Ergodic Theory and Dynamical Systems.

[6]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[7]  Marc A. Rieffel,et al.  Metrics on states from actions of compact groups , 1998, Documenta Mathematica.

[8]  M. Junge,et al.  Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2016, 1612.02735.

[9]  F. Latrémolière,et al.  Quantum Ultrametrics on AF Algebras and The Gromov-Hausdorff Propinquity , 2015, 1511.07114.

[10]  Konrad Aguilar,et al.  Quantum metrics from traces on full matrix algebras , 2019, Involve, a Journal of Mathematics.

[11]  Frédéric Latrémolière The modular Gromov–Hausdorff propinquity , 2016, Dissertationes Mathematicae.

[12]  Frédéric Latrémolière The Quantum Gromov-Hausdorff Propinquity , 2013, 1302.4058.

[13]  F. Boca An AF Algebra Associated with the Farey Tessellation , 2005, Canadian Journal of Mathematics.

[14]  G. Elliott,et al.  The structure of the irrational rotation C*-algebra , 1993 .

[15]  Ken Howard San Diego , 2003, Nature.

[16]  F. Latrémolière The covariant Gromov–Hausdorff propinquity , 2018, 1805.11229.

[17]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[18]  J. M. G. Fell,et al.  The structure of algebras of operator fields , 1961 .

[19]  A quantum metric on the Cantor Space , 2019, 1907.05835.