An Ideal Convergence
暂无分享,去创建一个
Konrad Aguilar | Samantha Brooker | Frédéric Latrémolière | Alejandra López | F. Latrémolière | Konrad Aguilar | Samantha Brooker | Alejandra López
[1] Hanfeng Li,et al. On Gromov-Hausdorff convergence for operator metric spaces , 2004, math/0411157.
[2] M. Rieffel. Matricial bridges for "Matrix algebras converge to the sphere" , 2015, 1502.00329.
[3] Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance , 2001, math/0108005.
[4] F. Latrémolière. Quantum Metric Spaces and the Gromov-Hausdorff Propinquity , 2015, 1506.04341.
[5] JENS KAAD,et al. Dynamics of compact quantum metric spaces , 2019, Ergodic Theory and Dynamical Systems.
[6] Mikhael Gromov. Structures métriques pour les variétés riemanniennes , 1981 .
[7] Marc A. Rieffel,et al. Metrics on states from actions of compact groups , 1998, Documenta Mathematica.
[8] M. Junge,et al. Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2016, 1612.02735.
[9] F. Latrémolière,et al. Quantum Ultrametrics on AF Algebras and The Gromov-Hausdorff Propinquity , 2015, 1511.07114.
[10] Konrad Aguilar,et al. Quantum metrics from traces on full matrix algebras , 2019, Involve, a Journal of Mathematics.
[11] Frédéric Latrémolière. The modular Gromov–Hausdorff propinquity , 2016, Dissertationes Mathematicae.
[12] Frédéric Latrémolière. The Quantum Gromov-Hausdorff Propinquity , 2013, 1302.4058.
[13] F. Boca. An AF Algebra Associated with the Farey Tessellation , 2005, Canadian Journal of Mathematics.
[14] G. Elliott,et al. The structure of the irrational rotation C*-algebra , 1993 .
[15] Ken Howard. San Diego , 2003, Nature.
[16] F. Latrémolière. The covariant Gromov–Hausdorff propinquity , 2018, 1805.11229.
[17] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[18] J. M. G. Fell,et al. The structure of algebras of operator fields , 1961 .
[19] A quantum metric on the Cantor Space , 2019, 1907.05835.