Syntheses and characterization of aryl-substituted pyrogallol[4]arenes and resorcin[4]arenes

Seven aryl-substituted pyrogallol[4]arenes and six aryl-substituted resorcin[4]arenes were synthesized through the acid catalyzed reaction of either pyrogallol or resorcinol with a specific alkoxybenzaldehyde. Single crystal X-ray data was obtained for all thirteen compounds. In order to determine the effect of the different pendent –R groups, four properties were investigated: π–π distance, inward tilt, twist angle, and the angle between the planes containing the pendent –R groups. Positioning of the –R groups, the carbon atom chain length of the –R groups, the number of upper-rim hydroxyl groups (resorcin[4]arene vs. pyrogallol[4]arene), and the number of substituted phenyl groups all influenced these four properties. The trends that develop are investigated and discussed.

[1]  S. Alshahateet Selective Solvent-Free Friedländer Synthesis and Supramolecular Chemistry of 13,14-Diphenyl-6,7-dihydrodibenzo(b,j)(4,7)phenanthroline , 2014 .

[2]  Y. Wan,et al.  Silica Sulfuric Acid-Catalyzed Syntheses of Calix[4] Resorcinarenes , 2013 .

[3]  J. Atwood,et al.  Mixed metal-organic nanocapsules , 2010 .

[4]  G. Gokel,et al.  Self-assembled, cogged hexameric nanotubes formed from pyrogallol[4]arenes with a unique branched side chain. , 2009, Chemical communications.

[5]  J. Atwood,et al.  Enhanced control over metal composition in mixed Ga/Zn and Ga/Cu coordinated pyrogallol[4]arene nanocapsules. , 2009, Chemical communications.

[6]  Nicholas P. Power,et al.  Metallo-supramolecular capsules , 2008 .

[7]  Nicholas P. Power,et al.  Rapid formation of metal-organic nano-capsules gives new insight into the self-assembly process. , 2008, Chemical communications.

[8]  M. Messali,et al.  Synthesis and Supramolecularity of C-Phenylcalix[4] Pyrogallolarenes: Temperature Effect on the Formation of Different Isomers , 2007 .

[9]  M. Zeller,et al.  2,8,14,20-Tetrakis(4-hydroxyphenyl)pyrogallol[4]arene dimethylformamide hexasolvate , 2007 .

[10]  Chaoguo Yan,et al.  Synthesis, crystal structure and configuration of acetylated aryl Pyrogallol[4]arenes , 2007 .

[11]  M. Zeller,et al.  2,8,14,20-Tetra­phenyl­pyrogallol[4]arene dimethyl­formamide octa­solvate , 2006 .

[12]  S. Grimme,et al.  New insights into the geometry of resorc[4]arenes: solvent-mediated supramolecular conformational and chiroptical control. , 2006, The Journal of organic chemistry.

[13]  J. Atwood,et al.  Toward the isolation of functional organic nanotubes. , 2006, Angewandte Chemie.

[14]  Hong‐Cai Zhou,et al.  Crystal structure of 2,8,14,20-tetranaphthylpyrogallol[4]arene , 2006 .

[15]  Gareth W. V. Cave,et al.  Supramolecular blueprint approach to metal-coordinated capsules , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Leonard J. Barbour,et al.  X-Seed — A Software Tool for Supramolecular Crystallography , 2001 .

[17]  C. Näther,et al.  Synthesis and Structural Studies of 5, 11, 17, 23-Tetrahydroxyresorc[4]arenes , 2001 .

[18]  M. M. García,et al.  Synthesis of a New Cavitand. 2 C60 Complex , 2000 .

[19]  J. Rebek,et al.  Tetramethoxy Calix[4]arenes Revisited: Conformational Control through Self-Assembly , 1996 .

[20]  V. Böhmer,et al.  Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[21]  Enrico Dalcanale,et al.  Host-guest complexation. 48. Octol building blocks for cavitands and carcerands , 1989 .

[22]  A. Hoegberg Cyclooligomeric phenol-aldehyde condensation products. 2. Stereoselective synthesis and DNMR study of two 1,8,15,22-tetraphenyl[14]metacyclophan-3,5,10,12,17,19,24,26-octols , 1980 .

[23]  S. Gronowitz,et al.  The Crystal and Molecular Structure of the Synthetic Tetramer C84H84Br4O16. , 1968 .

[24]  H. J. Vogel,et al.  Aldehyde—Resorcinol Condensations1 , 1940 .