Circuit quantum electrodynamics of granular aluminum resonators

[1]  Proceedings of SPIE,et al.  Quantum Optics , 2019, Problems and Solutions on Optics.

[2]  N. Roch,et al.  Observation of quantum many-body effects due to zero point fluctuations in superconducting circuits , 2019, Nature Communications.

[3]  A. Houck,et al.  Nanowire Superinductance Fluxonium Qubit. , 2018, Physical review letters.

[4]  I. Pop,et al.  Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum. , 2018, Physical review letters.

[5]  J. Bylander,et al.  High Kinetic Inductance NbN Nanowire Superinductors , 2018, Physical Review Applied.

[6]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[7]  C. Castellani,et al.  Optical signatures of the superconducting Goldstone mode in granular aluminum: Experiments and theory , 2017, 1705.03252.

[8]  L. Ranzani,et al.  Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier. , 2016, Physical review applied.

[9]  A. Blais,et al.  Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving , 2016, 1605.09408.

[10]  A. Coppolecchia,et al.  New application of superconductors: high sensitivity cryogenic light detectors , 2016, 1604.03314.

[11]  G. Deutscher,et al.  Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in coupled aluminum nanograins , 2016 .

[12]  C. Naud,et al.  Kerr coefficients of plasma resonances in Josephson junction chains , 2015, 1505.05845.

[13]  G. Deutscher,et al.  Signatures of Unconventional Superconductivity in Granular Aluminum , 2015 .

[14]  N. Ponthieu,et al.  Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz , 2015, 1504.00281.

[15]  R. J. Schoelkopf,et al.  Reconfigurable Josephson Circulator/Directional Amplifier , 2015, 1503.00209.

[16]  M. Weides,et al.  Aluminium-oxide wires for superconducting high kinetic inductance circuits , 2014 .

[17]  G. Deutscher,et al.  Mott transition in granular aluminum , 2014, 1407.7467.

[18]  G. Ithier,et al.  Bifurcation, mode coupling and noise in a nonlinear multimode superconducting microwave resonator , 2013, 1304.3693.

[19]  M. Devoret,et al.  Implementation of low-loss superinductances for quantum circuits , 2012, 1206.2964.

[20]  A. Kitaev,et al.  Quantum superinductor with tunable nonlinearity. , 2012, Physical review letters.

[21]  L. Ioffe,et al.  Coherent quantum phase slip , 2012, Nature.

[22]  Jay M. Gambetta,et al.  Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon , 2012, 1204.2237.

[23]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[24]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[25]  Dirk Bluhm,et al.  A Deconvolution Method for Switching Current Histograms as a Fast Diagnosis Tool , 2008 .

[26]  Jack Lidmar,et al.  Josephson junction transmission lines as tunable artificial crystals , 2008, 0804.2099.

[27]  L. Ioffe,et al.  Superconducting nanocircuits for topologically protected qubits , 2008, 0802.2295.

[28]  T. M. Klapwijk,et al.  Noise and Sensitivity of Aluminum Kinetic Inductance Detectors for Sub-mm Astronomy , 2008 .

[29]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[30]  K. Efetov,et al.  Granular electronic systems , 2006, cond-mat/0603522.

[31]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[32]  V. J. Emery,et al.  Importance of phase fluctuations in superconductors with small superfluid density , 1995, Nature.

[33]  W. L. Mclean,et al.  Coupling and isolation: Critical field and transition temperature of superconducting granular aluminum , 1981 .

[34]  R. Dynes,et al.  Metal-Insulator Transition in Granular Aluminum , 1981 .

[35]  G. Deutscher,et al.  Critical-field anisotropy and fluctuation conductivity in granular aluminum films , 1977 .

[36]  Y. Imry,et al.  Granular Superconducting Films , 1973 .

[37]  D. H. Martin,et al.  Polarised interferometric spectrometry for the millimetre and submillimetre spectrum , 1970 .

[38]  R. W. Cohen,et al.  Superconductivity in Granular Aluminum Films , 1968 .

[39]  R. Parmenter Isospin Formulation of the Theory of a Granular Superconductor , 1967 .

[40]  G. W. Cullen,et al.  Enhancement of superconductivity in metal films , 1966 .

[41]  Philip W. Anderson,et al.  Theory of dirty superconductors , 1959 .

[42]  G. Deutscher,et al.  Transition to zero dimensionality in granular aluminum superconducting films , 1973 .

[43]  S. Girvin,et al.  0 40 73 25 v 1 1 3 Ju l 2 00 4 Circuit Quantum Electrodynamics : Coherent Coupling of a Single Photon to a Cooper Pair Box , 2022 .