Effects of decomposition of leaves on bacterial biomass and on palatability to Lumbricus terrestris L.

[1]  J. Anderson,et al.  Plant litter quality and decomposition: an historical overview , 1997 .

[2]  Uffe Jørgensen,et al.  Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. , 1997 .

[3]  Ken Thompson,et al.  Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves , 1996 .

[4]  K. Giller,et al.  Driven by Nature: Plant Litter Quality and Decomposition , 1996 .

[5]  H. Wagner,et al.  Plant drug analysis : a thin layer chromatography atlas , 1996 .

[6]  Clive A. Edwards,et al.  Biology and Ecology of Earthworms , 1995 .

[7]  J. Zeyer,et al.  Quantification of fungal hyphae in leaves of deciduous trees by automated image analysis , 1995, Applied and environmental microbiology.

[8]  J. Bloem,et al.  Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis , 1995, Applied and environmental microbiology.

[9]  C. Gallet,et al.  Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem , 1995 .

[10]  D. Wilman,et al.  Concentration and availability to sheep of N, P, K, Ca, Mg and Na in chickweed, dandelion, dock, ribwort and spurrey, compared with perennial ryegrass , 1994, The Journal of Agricultural Science.

[11]  L. Brussaard,et al.  Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: Effects on soil fauna , 1993 .

[12]  L. Brussaard,et al.  Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions-decomposition and nutrient release , 1992 .

[13]  D. Herms,et al.  The Dilemma of Plants: To Grow or Defend , 1992, The Quarterly Review of Biology.

[14]  O. Daniel,et al.  Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus hoffmeister , 1992 .

[15]  K. Schleifer,et al.  Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. , 1992, Journal of general microbiology.

[16]  John C. Fry,et al.  2 Direct Methods and Biomass Estimation , 1990 .

[17]  J. Gosz,et al.  The Role of Carbon-Based Plant Secondary Metabolites in Decomposition in Terrestrial Ecosystems , 1988, The American Naturalist.

[18]  J. Anderson Invertebrate-mediated transport processes in soils , 1988 .

[19]  John C. Russ,et al.  Computer-Assisted Microscopy: The Measurement and Analysis of Images , 1988 .

[20]  G. Cordell,et al.  A direct bioautographic tlc assay for compounds possessing antibacterial activity. , 1987, Journal of natural products.

[21]  R. Stipanovic,et al.  Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas chromatography , 1985 .

[22]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  J. Anderson,et al.  Decomposition in Terrestrial Ecosystems , 1979 .

[24]  P. Feeny,et al.  Plant apparency and chemical defense , 1976 .

[25]  M. A. Wright Factors' governing ingestion by the earthworm Lumbricus terrestris (L.), with special reference to apple leaves , 1972 .

[26]  R. Hegnauer,et al.  Chemotaxonomie der Pflanzen; eine Ubersicht uber die Verbreitung und die systematische Bedeutung der Pflanzenstoffe , 1989 .