Weak RIC Analysis of Finite Gaussian Matrices for Joint Sparse Recovery

This letter provides tight upper bounds on the weak restricted isometry constant for compressed sensing with finite Gaussian measurement matrices. The bounds are used to develop a unified framework for the guaranteed recovery assessment of jointly sparse matrices from multiple measurement vectors. The analysis is based on the exact distribution of the extreme singular values of Gaussian matrices. Several joint sparse reconstruction algorithms are analytically compared in terms of the maximum support cardinality ensuring signal recovery, i.e., mixed norm minimization, MUSIC, and OSMP based algorithms.

[1]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[2]  H. Rauhut,et al.  Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms , 2008 .

[3]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[4]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[5]  Jared Tanner,et al.  Improved Bounds on Restricted Isometry Constants for Gaussian Matrices , 2010, SIAM J. Matrix Anal. Appl..

[6]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[7]  C'eline Nadal,et al.  Right tail expansion of Tracy-Widom beta laws , 2011, 1111.2761.

[8]  Ping Feng,et al.  Spectrum-blind minimum-rate sampling and reconstruction of multiband signals , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[9]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[10]  J. Tropp Algorithms for simultaneous sparse approximation. Part II: Convex relaxation , 2006, Signal Process..

[11]  Yoram Bresler,et al.  Subspace Methods for Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.

[12]  Marco Chiani,et al.  On the probability that all eigenvalues of Gaussian and Wishart random matrices lie within an interval. , 2015 .

[13]  Jared Tanner,et al.  Phase Transitions for Greedy Sparse Approximation Algorithms , 2010, ArXiv.

[14]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[15]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[16]  Jeffrey D. Blanchard,et al.  Greedy Algorithms for Joint Sparse Recovery , 2014, IEEE Transactions on Signal Processing.

[17]  Sae-Young Chung,et al.  Greedy Subspace Pursuit for Joint Sparse Recovery , 2016, J. Comput. Appl. Math..

[18]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[19]  Jared Tanner,et al.  Conjugate Gradient Iterative Hard Thresholding: Observed Noise Stability for Compressed Sensing , 2015, IEEE Transactions on Signal Processing.

[20]  Jared Tanner,et al.  Explorer Compressed Sensing : How Sharp Is the Restricted Isometry Property ? , 2011 .

[21]  Robert D. Nowak,et al.  Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels , 2010, Proceedings of the IEEE.

[22]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[23]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[24]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[25]  Yinyu Ye,et al.  A note on the complexity of Lp minimization , 2011, Math. Program..

[26]  Sandeep Gogineni,et al.  Target Estimation Using Sparse Modeling for Distributed MIMO Radar , 2011, IEEE Transactions on Signal Processing.

[27]  Jie Chen,et al.  Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.

[28]  R.G. Baraniuk,et al.  Distributed Compressed Sensing of Jointly Sparse Signals , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[29]  Andrea Giorgetti,et al.  On sparse recovery using finite Gaussian matrices: Rip-based analysis , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[30]  Andrea Giorgetti,et al.  Analysis of the Restricted Isometry Property for Gaussian Random Matrices , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[31]  Marco Chiani,et al.  On the Probability That All Eigenvalues of Gaussian, Wishart, and Double Wishart Random Matrices Lie Within an Interval , 2015, IEEE Transactions on Information Theory.

[32]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[33]  Yonina C. Eldar,et al.  Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.

[34]  Yonina C. Eldar,et al.  Rank Awareness in Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.

[35]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .