Layer Systems for Confluence - Formalized

Toyama’s theorem states that the union of two confluent term rewrite systems with disjoint signatures is again confluent. This is a fundamental result in term rewriting, and several proofs appear in the literature. The underlying proof technique has been adapted to prove further results like persistence of confluence (if a many-sorted term rewrite system is confluent, then the underlying unsorted system is confluent) or the preservation of confluence by currying.

[1]  Bertram Felgenhauer,et al.  Reachability, confluence, and termination analysis with state-compatible automata , 2017, Inf. Comput..

[2]  Yoshihito Toyama,et al.  On the Church-Rosser property for the direct sum of term rewriting systems , 1984, JACM.

[3]  Yoshihito Toyama,et al.  Modularity of Confluence: A Simplified Proof , 1994, Inf. Process. Lett..

[4]  Enno Ohlebusch,et al.  Modular Properties of Composable Term Rewriting Systems , 1995, J. Symb. Comput..

[5]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[6]  Clemens Ballarin Locales: A Module System for Mathematical Theories , 2013, Journal of Automated Reasoning.

[7]  Yoshihito Toyama,et al.  Proving Confluence of Term Rewriting Systems Automatically , 2009, RTA.

[8]  Nao Hirokawa,et al.  Uncurrying for Termination , 2008, LPAR.

[9]  Vincent van Oostrom Modularity of Confluence , 2008, IJCAR.

[10]  外山 芳人,et al.  Extending persistency of confluence with ordered sorts , 1996 .

[11]  Bertram Felgenhauer Deciding Confluence of Ground Term Rewrite Systems in Cubic Time , 2012, RTA.

[12]  Markus Wenzel,et al.  Isar - A Generic Interpretative Approach to Readable Formal Proof Documents , 1999, TPHOLs.

[13]  Stefan Kahrs Confluence of Curried Term-Rewriting Systems , 1995, J. Symb. Comput..

[14]  Bertram Felgenhauer,et al.  CSI: New Evidence - A Progress Report , 2017, CADE.

[15]  René Thiemann,et al.  Certification of Termination Proofs Using CeTA , 2009, TPHOLs.

[16]  Vincent van Oostrom,et al.  Layer Systems for Proving Confluence , 2014, FSTTCS.