Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film

Complex grain-boundary structures such as the 1–2 nm thick intergranular glassy films (IGF) play a prominent role in the failure behavior of nanophased ceramics. The IGF plays the role of an imperfection and serves as the location of strain localization and failure. This paper describes recently performed theoretical mechanical loading experiments on very large atomic models of IGF in silicon nitride using ab initio simulation to obtain their failure behavior. The ab initio simulations yield characteristic postpeak softening accompanied by strain localization zone. This paper applies microstructural granular mechanics-based higher-order continuum theory to model the failure behavior of these types of material systems. The results obtained from the ab initio simulations are compared with those predicted by the higher-order continuum theory.

[1]  Ted Belytschko,et al.  Continuum Theory for Strain‐Softening , 1984 .

[2]  R. W. Balluffi,et al.  Interfaces in crystalline materials , 2009 .

[3]  Yang Yang,et al.  Micromechanical model for cohesive materials based upon pseudo-granular structure , 2010 .

[4]  J. Pamin,et al.  Gradient-dependent plasticity in numerical simulation of localization phenomena , 1994 .

[5]  L. J. Sluys,et al.  Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture , 2002 .

[6]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[7]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[8]  Ching S. Chang,et al.  MODELING OF DISCRETE GRANULATES AS MICROPOLAR CONTINUA , 1990 .

[9]  P. Steinmann An improved FE expansion for micropolar localization analysis , 1994 .

[10]  C. Koch,et al.  Structural Nanocrystalline Materials: Fundamentals and Applications , 2007 .

[11]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[12]  A. Misra,et al.  Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si3N4 , 2010 .

[13]  L. J. Sluys,et al.  On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials , 1995 .

[14]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[15]  Ted Belytschko,et al.  Regularization of material instabilities by meshfree approximations with intrinsic length scales , 2000 .

[16]  T. Zhu,et al.  Mechanics of Ultra-Strength Materials , 2009 .

[17]  William A. Shelton,et al.  Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions , 2004, Nature.

[18]  A. Misra,et al.  Ab initio tensile experiment on a model of an intergranular glassy film in β-Si3N4 with prismatic surfaces , 2009 .

[19]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[20]  R. M. Cannon,et al.  Intergranular glassy films: An overview , 2006 .

[21]  W. Ching “Electronic Structure and Bonding of All Crystalline Phases in the Silica–Yttria–Silicon Nitride Phase Equilibrium Diagram” , 2005 .

[22]  H. Murakami,et al.  A nonlocal elastic damage theory: Mesh-insensitivity under strain softening , 1993 .

[23]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[24]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[25]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[26]  Zdenek P. Bazant,et al.  Spectral Analysis of Random Shrinkage Stresses in Concrete , 1984 .

[27]  R. D. Mindlin MICROSTRUCTURE IN LINEAR ELASTICITY , 1999 .

[28]  Jerzy Pamin,et al.  Dispersion analysis and element‐free Galerkin solutions of second‐ and fourth‐order gradient‐enhanced damage models , 2000 .

[29]  Ching S. Chang,et al.  Micro-mechanical modelling of granular material. Part 2: Plane wave propagation in infinite media , 2001 .

[30]  Fusao Oka,et al.  Dispersion and wave propagation in discrete and continuous models for granular materials , 1996 .

[31]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[32]  Zenon Mróz,et al.  Finite element analysis of deformation of strain‐softening materials , 1981 .

[33]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[34]  J. Nemes,et al.  Use of a rate-dependent continuum damage model to describe strain-softening in laminated composites , 1996 .

[35]  Xiaoqing Pan Atomistic structure of silicon nitride/silicate glass interfaces , 1996 .

[36]  Wam Marcel Brekelmans,et al.  Comparison of nonlocal approaches in continuum damage mechanics , 1995 .

[37]  Complex Nonlinear Deformation of Nanometer Intergranular Glassy Films in β−Si3N4 , 2005 .

[38]  A. Misra,et al.  Ab initio calculations of strain fields and failure patterns in silicon nitride intergranular glassy films , 2007 .

[39]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[40]  K. C. Valanis,et al.  A Global Damage Theory and the Hyperbolicity of the Wave Problem , 1991 .

[41]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[42]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[43]  Jian Luo,et al.  Stabilization of Nanoscale Quasi-Liquid Interfacial Films in Inorganic Materials: A Review and Critical Assessment , 2007 .

[44]  E. Aifantis,et al.  On Some Aspects in the Special Theory of Gradient Elasticity , 1997 .

[45]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[46]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[47]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  Ching S. Chang,et al.  HIGH-GRADIENT MODELING FOR LOVE WAVE PROPAGATION IN GEOLOGICAL MATERIALS , 1998 .

[50]  W. Ching,et al.  Electronic structure and bonding in the Y-Si-O-N quaternary crystals , 2004 .

[51]  de R René Borst,et al.  Wave propagation, localization and dispersion in a gradient-dependent medium , 1993 .

[52]  R. de Borst,et al.  Wave propagation and localization in a rate-dependent cracked medium-model formulation and one-dimensional examples , 1992 .

[53]  Ching S. Chang,et al.  Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory , 2001 .

[54]  Ching S. Chang,et al.  Packing Structure and Mechanical Properties of Granulates , 1990 .

[55]  Ted Belytschko,et al.  Iw.(--9jy Strain-softening Materials and Finite-element Solutions , 2022 .

[56]  R. L. Edwards,et al.  Comparison of tensile and bulge tests for thin-film silicon nitride , 2004 .

[57]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[58]  Chandrakant S. Desai,et al.  Analysis of a strain softening constitutive model , 1987 .

[59]  Jerzy Pamin,et al.  Two gradient plasticity theories discretized with the element-free Galerkin method , 2003 .

[60]  Nicolas Triantafyllidis,et al.  On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models , 1993 .

[61]  I. Ovid’ko Review on the fracture processes in nanocrystalline materials , 2007 .

[62]  Ching S. Chang,et al.  Constitutive relation for a particulate medium with the effect of particle rotation , 1990 .

[63]  L. B. Freund,et al.  Deformation trapping due to thermoplastic instability in one-dimensional wave propagation , 1984 .

[64]  Ching S. Chang,et al.  Wave Propagation in Granular Rod Using High-Gradient Theory , 1997 .

[65]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[66]  H. V. Swygenhoven,et al.  Atomistic Simulations of Mechanics of Nanostructures , 2009 .

[67]  Ching S. Chang,et al.  Second-gradient constitutive theory for granular material with random packing structure , 1995 .

[68]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[69]  R. Ritchie,et al.  Interface Structure and Atomic Bonding Characteristics in Silicon Nitride Ceramics , 2004, Science.