A new constitutive equation for elastoviscoplastic fluid flows
暂无分享,去创建一个
[1] K. Hohenemser,et al. Über die Ansätze der Mechanik isotroper Kontinua , 1932 .
[2] R. Tanner,et al. A new constitutive equation derived from network theory , 1977 .
[3] Quoc Son Nguyen,et al. Sur les matériaux standard généralisés , 1975 .
[4] Flow of foam past an elliptical obstacle. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] Patrick Le Tallec,et al. Numerical analysis of viscoelastic problems , 1990 .
[6] J. Oldroyd. A rational formulation of the equations of plastic flow for a Bingham solid , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] R. Mises. Mechanik der festen Körper im plastisch- deformablen Zustand , 1913 .
[8] K. Ahn,et al. Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification , 2003 .
[9] J. Oldroyd. On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[10] Alexander M. Puzrin,et al. A thermomechanical framework for rate-independent dissipative materials with internal functions , 2001 .
[11] A. B. Metzner,et al. The Cox–Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stress , 1991 .
[12] P. Saramito,et al. Efficient simulation of nonlinear viscoelastic fluid flows , 1995 .
[13] R. Keunings,et al. Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model , 2005 .
[14] D. Vlassopoulos,et al. A generalized Giesekus constitutive model with retardation time and its association to the spurt effect , 1995 .
[15] Pierre Saramito,et al. An adaptive finite element method for Bingham fluid flows around a cylinder , 2003 .
[16] G. Maugin. The Thermomechanics of Plasticity and Fracture , 1992 .
[17] K. Ahn,et al. Large amplitude oscillatory shear as a way to classify the complex fluids , 2002 .
[18] Alexander M. Puzrin,et al. Rate-Dependent Hyperplasticity with Internal Functions , 2003 .
[19] E. C. Bingham. Fluidity And Plasticity , 1922 .
[20] R. J. Gordon,et al. Anisotropic Fluid Theory: A Different Approach to the Dumbbell Theory of Dilute Polymer Solutions , 1972 .
[21] Alexander M. Puzrin,et al. Rate-dependent plasticity models derived from potential functions , 2002 .