A new constitutive equation for elastoviscoplastic fluid flows

From a thermodynamic theory, a new model for elastoviscoplastic fluid flow is presented. It extends the Bingham viscoplastic model and the Oldroyd viscoelastic model. Fundamental flows are studied: simple shear flow, uniaxial elongation and large amplitude oscillatory shear. The complex moduli (G',G'') are founded to be in qualitative agreement with experimental data for materials that present microscopic network structures and large scale rearrangements. Various fluids of practical interest, such as liquid foams, droplet emulsions or blood, present such elastoviscoplastic behavior: at low stress, the material behaves as a viscoelastic solid, whereas at stresses above a yield stress, the material behaves as a fluid.

[1]  K. Hohenemser,et al.  Über die Ansätze der Mechanik isotroper Kontinua , 1932 .

[2]  R. Tanner,et al.  A new constitutive equation derived from network theory , 1977 .

[3]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[4]  Flow of foam past an elliptical obstacle. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Patrick Le Tallec,et al.  Numerical analysis of viscoelastic problems , 1990 .

[6]  J. Oldroyd A rational formulation of the equations of plastic flow for a Bingham solid , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  R. Mises Mechanik der festen Körper im plastisch- deformablen Zustand , 1913 .

[8]  K. Ahn,et al.  Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification , 2003 .

[9]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Alexander M. Puzrin,et al.  A thermomechanical framework for rate-independent dissipative materials with internal functions , 2001 .

[11]  A. B. Metzner,et al.  The Cox–Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stress , 1991 .

[12]  P. Saramito,et al.  Efficient simulation of nonlinear viscoelastic fluid flows , 1995 .

[13]  R. Keunings,et al.  Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model , 2005 .

[14]  D. Vlassopoulos,et al.  A generalized Giesekus constitutive model with retardation time and its association to the spurt effect , 1995 .

[15]  Pierre Saramito,et al.  An adaptive finite element method for Bingham fluid flows around a cylinder , 2003 .

[16]  G. Maugin The Thermomechanics of Plasticity and Fracture , 1992 .

[17]  K. Ahn,et al.  Large amplitude oscillatory shear as a way to classify the complex fluids , 2002 .

[18]  Alexander M. Puzrin,et al.  Rate-Dependent Hyperplasticity with Internal Functions , 2003 .

[19]  E. C. Bingham Fluidity And Plasticity , 1922 .

[20]  R. J. Gordon,et al.  Anisotropic Fluid Theory: A Different Approach to the Dumbbell Theory of Dilute Polymer Solutions , 1972 .

[21]  Alexander M. Puzrin,et al.  Rate-dependent plasticity models derived from potential functions , 2002 .