Exploring Nonlinear Manifold Learning for Classification of Hyperspectral Data

Increased availability of hyperspectral data and greater access to advanced computing have motivated development of more advanced methods for exploitation of nonlinear characteristics of these data. Advances in manifold learning developed within the machine learning community are now being adapted for analysis of hyperspectral data. This chapter investigates the performance of popular global (Isomap and KPCA) and local manifold nonlinear learning methods (LLE, LTSA, LE) for dimensionality reduction in the context of classification. Experiments were conducted on hyperspectral data acquired by multiple sensors at various spatial resolutions over different types of land cover. Nonlinear dimensionality reduction methods often outperformed linear extraction methods and rivaled or were superior to those obtained using the full dimensional data.

[1]  Nicolas Le Roux,et al.  Learning Eigenfunctions Links Spectral Embedding and Kernel PCA , 2004, Neural Computation.

[2]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[3]  Thomas L. Ainsworth,et al.  Bathymetric Retrieval From Hyperspectral Imagery Using Manifold Coordinate Representations , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[4]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[5]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[6]  Melba M. Crawford,et al.  Manifold Learning for Multi-classifier Systems via Ensembles , 2009, MCS.

[7]  D. D. Ridder,et al.  Locally linear embedding for classification , 2002 .

[8]  J. Boardman,et al.  Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm , 1992 .

[9]  Jinwen Tian,et al.  Generalised supervised local tangent space alignment for hyperspectral image classification , 2010 .

[10]  Joydeep Ghosh,et al.  Multiresolution manifold learning for classification of hyperspectral data , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[11]  Li Ma,et al.  Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding , 2010 .

[12]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[13]  Dimitris K. Agrafiotis,et al.  Stochastic proximity embedding , 2003, J. Comput. Chem..

[14]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[15]  Hongyu Li,et al.  Supervised Learning on Local Tangent Space , 2005, ISNN.

[16]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[17]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[18]  Shuicheng Yan,et al.  Graph embedding: a general framework for dimensionality reduction , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[20]  Guillermo Sapiro,et al.  Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images , 2007, IEEE Geoscience and Remote Sensing Letters.

[21]  Tian Han,et al.  Investigation of Nonlinearity in Hyperspectral Imagery Using Surrogate Data Methods , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Thomas L. Ainsworth,et al.  Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[23]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Jon Atli Benediktsson,et al.  Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas , 2009, EURASIP J. Adv. Signal Process..

[25]  Joydeep Ghosh,et al.  Applying nonlinear manifold learning to hyperspectral data for land cover classification , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[26]  Thomas L. Ainsworth,et al.  Exploiting manifold geometry in hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[28]  Jing Wang Improve local tangent space alignment using various dimensional local coordinates , 2008, Neurocomputing.

[29]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[30]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[31]  Li Ma,et al.  Local Manifold Learning-Based $k$ -Nearest-Neighbor for Hyperspectral Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Joydeep Ghosh,et al.  Improved Nonlinear Manifold Learning for Land Cover Classification via Intelligent Landmark Selection , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[33]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[34]  Melba M. Crawford,et al.  A novel adaptive classification method for hyperspectral data using manifold regularization kernel machines , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[35]  Qing Wang,et al.  Using Diffusion Geometric Coordinates for Hyperspectral Imagery Representation , 2009, IEEE Geoscience and Remote Sensing Letters.

[36]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[37]  Joydeep Ghosh,et al.  Spatially Adapted Manifold Learning for Classification of Hyperspectral Imagery with Insufficient Labeled Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.