Thermal Annealing-Free SnO2 for Fully Room-Temperature-Processed Perovskite Solar Cells.

The SnO2 electron transport layer (ETL) for perovskite solar cells (PSCs) has been recognized as one of the most reported protocols due to its processing convenience, high reproducibility, and excellence in device performance. To date, the thermal annealing (TA) process is still an essential step for a high-quality SnO2 ETL to reduce the surface trap density. This however could restrict its processing with high thermal energy input and set a barrier to the easiness of manufacturing such as processing under room-temperature conditions. Herein, we report a thermal annealing-free (TAF) SnO2 ETL by an alternative UV-ozone (UVO) treatment. This technique simultaneously endows the SnO2 ETL with a deeper valence band maximum (EVB) and lower defect density. Furthermore, with this SnO2 ETL, a power conversion efficiency (PCE) of 21.46 and 22.26% was achieved based on MAPbI3 and Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 absorbers, respectively. Importantly, a fully room-temperature-processed (RTP) PSC based on the TAF-SnO2 ETL has been demonstrated with a PCE of 20.88% on a rigid substrate and 15.92% on a flexible substrate, which are the highest values for RTP solar cells.

[1]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[2]  Xin Zhang,et al.  Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer , 2021, Journal of Energy Chemistry.

[3]  Feng Yan,et al.  Recent progress of flexible perovskite solar cells , 2021, Nano Today.

[4]  Tai-De Li,et al.  CO2 doping of organic interlayers for perovskite solar cells , 2021, Nature.

[5]  Yuhang Liu,et al.  Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability , 2021, Joule.

[6]  Y. Qi,et al.  Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability , 2021, Science.

[7]  Thomas G. Allen,et al.  Tin Oxide Electron‐Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells , 2021, Advanced materials.

[8]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[9]  Thomas G. Allen,et al.  Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering , 2021 .

[10]  Yaoguang Rong,et al.  Multifunctional Polymer‐Regulated SnO2 Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells , 2020, Advanced materials.

[11]  Andrew H. Proppe,et al.  Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells , 2020 .

[12]  Ki Chul Kim,et al.  Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells , 2020 .

[13]  James E. Bishop,et al.  Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells , 2020, ACS applied energy materials.

[14]  Y. Song,et al.  Dopant‐Free, Amorphous–Crystalline Heterophase SnO2 Electron Transport Bilayer Enables >20% Efficiency in Triple‐Cation Perovskite Solar Cells , 2020, Advanced Functional Materials.

[15]  Yuzhu Li,et al.  Low‐Temperature‐Processed WO x as Electron Transfer Layer for Planar Perovskite Solar Cells Exceeding 20% Efficiency , 2020 .

[16]  N. Park,et al.  Scalable fabrication and coating methods for perovskite solar cells and solar modules , 2020, Nature Reviews Materials.

[17]  Keqing Huang,et al.  Flexible Planar Heterojunction Perovskite Solar Cells Fabricated via Sequential Roll‐to‐Roll Microgravure Printing and Slot‐Die Coating Deposition , 2020, Solar RRL.

[18]  Jia Zhu,et al.  Simultaneous Contact and Grain‐Boundary Passivation in Planar Perovskite Solar Cells Using SnO2‐KCl Composite Electron Transport Layer , 2019, Advanced Energy Materials.

[19]  Tetsuji Yano,et al.  Effects of UV irradiation on the electrical and optical properties of solution-processed transparent ZnO films , 2019, Applied Surface Science.

[20]  P. F. Méndez,et al.  Analysis of the UV–Ozone‐Treated SnO 2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis , 2019, Solar RRL.

[21]  Li Wang,et al.  Spontaneous Interface Ion Exchange: Passivating Surface Defects of Perovskite Solar Cells with Enhanced Photovoltage , 2019, Advanced Energy Materials.

[22]  N. Park,et al.  Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells , 2019, Advanced materials.

[23]  Chang Su Kim,et al.  Effect of Ultraviolet–Ozone Treatment on the Properties and Antibacterial Activity of Zinc Oxide Sol-Gel Film , 2019, Materials.

[24]  Liduo Wang,et al.  Improved SnO2 Electron Transport Layers Solution‐Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies , 2019, Advanced Energy Materials.

[25]  Sujuan Wu,et al.  Solvent‐Assisted Low‐Temperature Crystallization of SnO2 Electron‐Transfer Layer for High‐Efficiency Planar Perovskite Solar Cells , 2019, Advanced Functional Materials.

[26]  Jing Li,et al.  High performance perovskite sub-module with sputtered SnO2 electron transport layer , 2019, Solar Energy.

[27]  Ruixia Yang,et al.  Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications , 2019, Angewandte Chemie.

[28]  Sisi He,et al.  Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer , 2018, Advanced Functional Materials.

[29]  Weijian Chen,et al.  Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module , 2018, Nature Communications.

[30]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[31]  Yang Yang,et al.  2D perovskite stabilized phase-pure formamidinium perovskite solar cells , 2018, Nature Communications.

[32]  Xingwang Zhang,et al.  SnO2 : A Wonderful Electron Transport Layer for Perovskite Solar Cells. , 2018, Small.

[33]  Tongle Bu,et al.  Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. , 2018, ACS applied materials & interfaces.

[34]  G. Fang,et al.  Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells , 2018, Advanced materials.

[35]  Deren Yang,et al.  Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. , 2017, ACS nano.

[36]  Chang Li,et al.  UV-Sintered Low-Temperature Solution-Processed SnO2 as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[37]  K. Gödel,et al.  Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells , 2016 .

[38]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[39]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[40]  Xiaojing Yang,et al.  Graphene‐Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium‐Ion Batteries , 2013 .

[41]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[42]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[43]  A. Galdikas,et al.  Surface chemistry of tin oxide based gas sensors , 1994 .