Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation

In this paper, we study the effects of the spontaneous curvature on the static deformation of a vesicle membrane under the elastic bending energy, with prescribed bulk volume and surface area. Generalizing the phase field models developed in our previous works, we deduce a new energy formula involving the spontaneous curvature effects. Several axis-symmetric configurations are obtained through numerical simulations. Some analysis on the effects of the spontaneous curvature on the vesicle membrane shapes are also provided.

[1]  Reinhard Lipowsky,et al.  Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry , 1999, European Biophysics Journal.

[2]  Liu Ji-Xing,et al.  NUMERICAL OBSERVATION OF NONAXISYMMETRIC VESICLES IN FLUID MEMBRANES , 1998 .

[3]  Ou-Yang Zhong-can,et al.  Anchor ring-vesicle membranes. , 1990 .

[4]  Seifert,et al.  Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[6]  Andreas Prohl,et al.  Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..

[7]  M I Bloor,et al.  Method for efficient shape parametrization of fluid membranes and vesicles. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[9]  Gunduz Caginalp,et al.  Phase field equations in the singular limit of sharp interface problems , 1992 .

[10]  William L. George,et al.  A Parallel 3D Dendritic Growth Simulator Using the Phase-Field Method , 2002 .

[11]  Ou-Yang Zhong-can,et al.  Geometric methods in the elastic theory of membranes in liquid crystal phases , 1999 .

[12]  Zhiming Chen,et al.  An error estimate for a finite-element scheme for a phase field model , 1994 .

[13]  Seifert,et al.  Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[15]  Qiang Du,et al.  Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..

[16]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[17]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[18]  U. Seifert,et al.  Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory , 1996, cond-mat/9612151.

[19]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[20]  Philippe G. Ciarlet,et al.  Introduction to Linear Shell Theory , 1989 .

[21]  W. Helfrich,et al.  Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. , 1989, Physical review. A, General physics.

[22]  S. Safran,et al.  Interaction between inclusions embedded in membranes. , 1996, Biophysical journal.