Signal and noise extraction from analog memory elements for neuromorphic computing

[1]  Steven J. Plimpton,et al.  Multiscale Co-Design Analysis of Energy, Latency, Area, and Accuracy of a ReRAM Analog Neural Training Accelerator , 2017, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[2]  Shimeng Yu,et al.  Improving Analog Switching in HfOx-Based Resistive Memory With a Thermal Enhanced Layer , 2017, IEEE Electron Device Letters.

[3]  Yusuf Leblebici,et al.  Stochastic weight updates in phase-change memory-based synapses and their influence on artificial neural networks , 2017, 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[4]  Thomas P. Parnell,et al.  Temporal correlation detection using computational phase-change memory , 2017, Nature Communications.

[5]  H.-S. Philip Wong,et al.  Face classification using electronic synapses , 2017, Nature Communications.

[6]  Heiner Giefers,et al.  Mixed-precision in-memory computing , 2017, Nature Electronics.

[7]  Pritish Narayanan,et al.  Neuromorphic computing using non-volatile memory , 2017 .

[8]  Wei D. Lu,et al.  Sparse coding with memristor networks. , 2017, Nature nanotechnology.

[9]  Evangelos Eleftheriou,et al.  Inherent stochasticity in phase-change memory devices , 2016, 2016 46th European Solid-State Device Research Conference (ESSDERC).

[10]  I-Ting Wang,et al.  3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications , 2016, Nanotechnology.

[11]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[12]  Steven J. Plimpton,et al.  Resistive memory device requirements for a neural algorithm accelerator , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[13]  H. Hwang,et al.  Improved Synaptic Behavior Under Identical Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems , 2016, IEEE Electron Device Letters.

[14]  Runchen Fang,et al.  A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells , 2016, Nanotechnology.

[15]  Gökmen Tayfun,et al.  Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations , 2016, Front. Neurosci..

[16]  R. Jordan,et al.  NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[17]  Shimeng Yu,et al.  Mitigating effects of non-ideal synaptic device characteristics for on-chip learning , 2015, 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[18]  Abu Sebastian,et al.  Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices , 2015, IEEE Electron Device Letters.

[19]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[20]  Yoon-Ha Jeong,et al.  Optimization of Conductance Change in Pr1–xCaxMnO3-Based Synaptic Devices for Neuromorphic Systems , 2015, IEEE Electron Device Letters.

[21]  Fabien Alibart,et al.  Plasticity in memristive devices for spiking neural networks , 2015, Front. Neurosci..

[22]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[23]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[24]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[25]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[26]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[27]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[28]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[29]  E. Miranda,et al.  The Quantum Point-Contact Memristor , 2012, IEEE Electron Device Letters.

[30]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[31]  D. Ielmini,et al.  Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth , 2011, IEEE Transactions on Electron Devices.

[32]  C. Hagleitner,et al.  Device, circuit and system-level analysis of noise in multi-bit phase-change memory , 2010, 2010 International Electron Devices Meeting.

[33]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[34]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[35]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[36]  M. Breitwisch Phase Change Memory , 2008, 2008 International Interconnect Technology Conference.

[37]  M. Breitwisch,et al.  Novel Lithography-Independent Pore Phase Change Memory , 2007, 2007 IEEE Symposium on VLSI Technology.