Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm

This paper presents a study of the performance of TRIBES, an adaptive particle swarm optimization algorithm. Particle Swarm Optimization (PSO) is a biologically-inspired optimization method. Recently, researchers have used it effectively in solving various optimization problems. However, like most optimization heuristics, PSO suffers from the drawback of being greatly influenced by the selection of its parameter values. Thus, the common belief is that the performance of a PSO algorithm is directly related to the tuning of such parameters. Usually, such tuning is a lengthy, time consuming and delicate process. A new adaptive PSO algorithm called TRIBES avoids manual tuning by defining adaptation rules which aim at automatically changing the particles’ behaviors as well as the topology of the swarm. In TRIBES, the topology is changed according to the swarm behavior and the strategies of displacement are chosen according to the performances of the particles. A comparative study carried out on a large set of benchmark functions shows that the performance of TRIBES is quite competitive compared to most other similar PSO algorithms that need manual tuning of parameters. The performance evaluation of TRIBES follows the testing procedure introduced during the 2005 IEEE Conference on Evolutionary Computation. The main objective of the present paper is to perform a global study of the behavior of TRIBES under several conditions, in order to determine strengths and drawbacks of this adaptive algorithm.

[1]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  Pedro J. Ballester,et al.  Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX , 2005, 2005 IEEE Congress on Evolutionary Computation.

[4]  Godfrey C. Onwubolu,et al.  New optimization techniques in engineering , 2004, Studies in Fuzziness and Soft Computing.

[5]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[6]  Kalyanmoy Deb,et al.  A population-based, steady-state procedure for real-parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[8]  Keiichiro Yasuda,et al.  Adaptive particle swarm optimization using velocity information of swarm , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[9]  Frank Harary,et al.  Graph Theory , 2016 .

[10]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[11]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[12]  Suganthan [IEEE 1999. Congress on Evolutionary Computation-CEC99 - Washington, DC, USA (6-9 July 1999)] Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) - Particle swarm optimiser with neighbourhood operator , 1999 .

[13]  Q. Henry Wu,et al.  MCPSO: A multi-swarm cooperative particle swarm optimizer , 2007, Appl. Math. Comput..

[14]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[15]  Sabre Kais,et al.  Pivot method for global optimization , 1997 .

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Carlos García-Martínez,et al.  Hybrid real-coded genetic algorithms with female and male differentiation , 2005, 2005 IEEE Congress on Evolutionary Computation.

[18]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  Yutian Liu,et al.  An adaptive PSO algorithm for reactive power optimization , 2003 .

[20]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[21]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[22]  Oliver Vornberger,et al.  An Adaptive Parallel Genetic Algorithm for VLSI-Layout Optimization , 1996, PPSN.

[23]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search , 2005, 2005 IEEE Congress on Evolutionary Computation.

[24]  Hidefumi Sawai,et al.  Genetic algorithm inspired by gene duplication , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[25]  Petr Posík,et al.  Real-parameter optimization using the mutation step co-evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[26]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[27]  Maurice Clerc Binary Particle Swarm Optimisers: toolbox, derivations, and mathematical insights , 2005 .

[28]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[29]  V. Deved,et al.  Proceedings of the 24th IASTED international conference on Artificial intelligence and applications , 2006 .

[30]  Xiao-Feng Xie,et al.  Adaptive particle swarm optimization on individual level , 2002, 6th International Conference on Signal Processing, 2002..

[31]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[32]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[33]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[34]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[35]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[36]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[37]  Baruch Rosenstein,et al.  Dynamical analysis of survival of Kosterlitz-Thouless pairs due to pinning , 1997 .

[38]  Andries Petrus Engelbrecht,et al.  Using neighbourhoods with the guaranteed convergence PSO , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[39]  Amir Nakib,et al.  Magnetic Resonance Image Segmentation Based on Two-Dimensional Exponential Entropy and a Parameter Free PSO , 2007, Artificial Evolution.

[40]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[41]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[42]  Yongling Zheng,et al.  On the convergence analysis and parameter selection in particle swarm optimization , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[43]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[44]  Gabriella Kókai,et al.  Self-adaptive ant colony optimisation applied to function allocation in vehicle networks , 2007, GECCO '07.

[45]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[46]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[47]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[48]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[49]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[50]  Donald E. Waagen,et al.  Proceedings of the 7th International Conference on Evolutionary Programming VII , 1998 .

[51]  K. Yasumoto,et al.  Agent Oriented Self Adaptive Genetic Algorithm , 2003 .

[52]  Pierre Paris,et al.  Shell model level structure of {sup 216}Fr , 1997 .

[53]  Francisco Herrera,et al.  Adaptive local search parameters for real-coded memetic algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[54]  Godfrey C. Onwubolu TRIBES application to the flow shop scheduling problem , 2004 .

[55]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[56]  Weicai Zhong,et al.  A multiagent genetic algorithm for global numerical optimization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[57]  M.N. Vrahatis,et al.  Particle swarm optimizers for Pareto optimization with enhanced archiving techniques , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[58]  E. Wilson,et al.  Sociobiology: The New Synthesis , 1975 .

[59]  Marcus Gallagher,et al.  Experimental results for the special session on real-parameter optimization at CEC 2005: a simple, continuous EDA , 2005, 2005 IEEE Congress on Evolutionary Computation.

[60]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[61]  Hamid Aghvami,et al.  Understanding UMTS Radio Network Modelling, Planning and Automated Optimisation: Theory and Practice , 2006 .

[62]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[63]  Zhang Duan Self-adaptive ant colony optimization routing algorithm for mobile Ad Hoc network , 2009 .