Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass

The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, but as yet there is no successful economically viable commercial system producing biofuel. However, the majority of the research has focused on producing fuels from microalgae rather than from macroalgae. This article briefly reviews the methods by which useful energy may be extracted from macroalgae biomass including: direct combustion, pyrolysis, gasification, trans-esterification to biodiesel, hydrothermal liquefaction, fermentation to bioethanol, fermentation to biobutanol and anaerobic digestion, and explores technical and engineering difficulties that remain to be resolved.

[1]  Michele Aresta,et al.  Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction , 2005 .

[2]  Gail Taylor,et al.  Biofuels and the biorefinery concept , 2008 .

[3]  A. López-Contreras,et al.  Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. , 2013, Bioresource technology.

[4]  J. Milledge Micro-algal biorefineries , 2013 .

[5]  H. Woo,et al.  Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods , 2014 .

[6]  A. Shilton,et al.  Wastewater treatment high rate algal ponds for biofuel production. , 2011, Bioresource technology.

[7]  Sascha R.A. Kersten,et al.  Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept , 2012 .

[8]  Xuewu Zhang,et al.  Biodiesel Production by Microalgal Biotechnology , 2018, Renewable Energy.

[9]  A. Bridgwater Review of fast pyrolysis of biomass and product upgrading , 2012 .

[10]  J C Akunna,et al.  Modelling sodium inhibition on the anaerobic digestion process. , 2012, Water science and technology : a journal of the International Association on Water Pollution Research.

[11]  G. Guan,et al.  Steam co-gasification of brown seaweed and land-based biomass , 2014 .

[12]  Jacob A. Moulijn,et al.  Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels , 2011 .

[13]  Jonas Dahl,et al.  Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. , 2011, Bioresource technology.

[14]  Linhua Song,et al.  Thermal cracking of Enteromorpha prolifera with solvents to bio-oil , 2014 .

[15]  A. Lapidus The mechanism of hydrocarbon synthesis from CO and H2 on cobalt catalysts , 2013, Solid Fuel Chemistry.

[16]  P. Dyer,et al.  Copper(II)-mediated thermolysis of alginates: a model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae , 2013, Interface Focus.

[17]  David D. Hsu,et al.  Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways , 2010 .

[18]  Sonia Heaven,et al.  Methods of energy extraction from microalgal biomass: a review , 2014, Reviews in Environmental Science and Bio/Technology.

[19]  A. J. Smit Medicinal and pharmaceutical uses of seaweed natural products: A review , 2004, Journal of Applied Phycology.

[20]  E. Olguín Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. , 2012, Biotechnology advances.

[21]  Viatcheslav Kafarov,et al.  MICROALGAE BASED BIOREFINERY: ISSUES TO CONSIDER , 2011 .

[22]  J. Cuello,et al.  Bioethanol production from the macroalgae Sargassum spp. , 2013, Bioresource technology.

[23]  Jenny M. Jones,et al.  Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA , 2009 .

[24]  P. Dyer,et al.  An Introduction to Pyrolysis and Catalytic Pyrolysis: Versatile Techniques for Biomass Conversion , 2013 .

[25]  J. S. Rowbotham,et al.  Thermochemical processing of macroalgae: a late bloomer in the development of third-generation biofuels? , 2012 .

[26]  S. Renganathan,et al.  Production of algal biodiesel from marine macroalgae Enteromorpha compressa by two step process: optimization and kinetic study. , 2013, Bioresource technology.

[27]  Trevor Coward,et al.  Nova Science Publishers , 2013 .

[28]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[29]  Paul T. Williams,et al.  Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. , 2013, Bioresource technology.

[30]  Peigao Duan,et al.  Co-liquefaction of micro- and macroalgae in subcritical water. , 2013, Bioresource technology.

[31]  E. Steen,et al.  Fischer‐Tropsch Catalysts for the Biomass‐to‐Liquid (BTL)‐Process , 2008 .

[32]  Changyan Yang,et al.  Fast pyrolysis of microalgae to produce renewable fuels , 2004 .

[33]  Ayhan Demirbas,et al.  Hydrogen from Mosses and Algae via Pyrolysis and Steam Gasification , 2009 .

[34]  André Faaij,et al.  Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential , 2004 .

[35]  Y. Ghasemi,et al.  Microalgae biofuel potentials (Review) , 2012, Applied Biochemistry and Microbiology.

[36]  M G Hilton,et al.  Anaerobic digestion of a sulfate-rich molasses wastewater: Inhibition of hydrogen sulfide production. , 1988, Biotechnology and bioengineering.

[37]  Yong-Woo Lee,et al.  Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. , 2013, Bioresource technology.

[38]  A. Tsutsumi,et al.  Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures , 2014 .

[39]  A. Olabi,et al.  Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas , 2014 .

[40]  Sai Gu,et al.  A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas , 2014 .

[41]  Faizal Bux,et al.  Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. , 2011, Journal of bioscience and bioengineering.

[42]  Kostas S. Triantafyllidis,et al.  The role of catalysis for the sustainable production of bio-fuels and bio-chemicals , 2013 .

[43]  F. Miglietta,et al.  More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar , 2015 .

[44]  Stewart Brown,et al.  “Catalysis in the Refining of Fischer-Tropsch Syncrude” , 2011 .

[45]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[46]  Marc Y Menetrez,et al.  An overview of algae biofuel production and potential environmental impact. , 2012, Environmental science & technology.

[47]  T. Minowa,et al.  Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae , 1999 .

[48]  S. Viamajala,et al.  Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. , 2011, Bioresource technology.

[49]  John J. Milledge,et al.  Commercial application of microalgae other than as biofuels: a brief review , 2011 .

[50]  René Moletta,et al.  Treatment of organic pollution in industrial saline wastewater: a literature review. , 2006, Water research.

[51]  K. L Kadam,et al.  Environmental implications of power generation via coal-microalgae cofiring , 2002 .

[52]  A. Demirbas,et al.  Biomass resource facilities and biomass conversion processing for fuels and chemicals , 2001 .

[53]  S. Horn,et al.  Ethanol production from seaweed extract , 2000, Journal of Industrial Microbiology and Biotechnology.

[54]  T. Hutchings,et al.  Intrinsic activation: the relationship between biomass inorganic content and porosity formation during pyrolysis. , 2014, Bioresource technology.

[55]  L. T. Angenent,et al.  Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. , 2014, Environmental science & technology.

[56]  Arno de Klerk,et al.  Greener Fischer-Tropsch Processes for Fuels and Feedstocks: MAITLIS:FT O-BK , 2013 .

[57]  Quang-Vu Bach,et al.  Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests , 2014 .

[58]  D. Leckel Hydrocracking of Iron-Catalyzed Fischer−Tropsch Waxes , 2005 .

[59]  D. Walker Biofuels – for better or worse? , 2010 .

[60]  S. Boussiba,et al.  Advances in the Production of High-Value Products by Microalgae , 2014 .

[61]  K. Norinaga,et al.  Low-Temperature Gasification of Biomass and Lignite: Consideration of Key Thermochemical Phenomena, Rearrangement of Reactions, and Reactor Configuration , 2014 .

[62]  Shicheng Zhang,et al.  Hydrothermal Liquefaction of Macroalgae Enteromorpha prolifera to Bio-oil , 2010 .

[63]  A. Rowe,et al.  Energy input, carbon intensity and cost for ethanol produced from farmed seaweed , 2014 .

[64]  Qian Wang,et al.  Compositional analysis of bio-oil derived from pyrolysis of seaweed , 2013 .

[65]  S. Kraan,et al.  Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production , 2010, Mitigation and Adaptation Strategies for Global Change.

[66]  Jenny M. Jones,et al.  Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. , 2011, Bioresource technology.

[67]  K. S. Creamer,et al.  Inhibition of anaerobic digestion process: a review. , 2008, Bioresource technology.

[68]  M. Balat,et al.  Progress in bioethanol processing , 2008 .

[69]  D. Walker,et al.  Biofuels, facts, fantasy, and feasibility , 2009, Journal of Applied Phycology.

[70]  J. Benemann,et al.  Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report , 1998 .

[71]  X. Miao,et al.  High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. , 2004, Journal of biotechnology.

[72]  R. Samson,et al.  Improved performance of anaerobic digestion ofSpirulinamaxima algal biomass by addition of carbon-rich wastes , 1983, Biotechnology Letters.

[73]  M. Bilal Khan,et al.  Progress in energy from microalgae: A review , 2013 .

[74]  Peter McKendry,et al.  Energy production from biomass (Part 3): Gasification technologies. , 2002, Bioresource technology.

[75]  Xiumin Jiang,et al.  Thermal analysis studies on combustion characteristics of seaweed , 2008 .

[76]  D. Fabbri,et al.  Hydrothermal Treatment (HTT) of Microalgae: Detailed Molecular Characterization of HTT Oil in View of HTT Mechanism Elucidation , 2012 .

[77]  K. W. Ragland,et al.  Wood ash composition as a function of furnace temperature , 1993 .

[78]  Wang Qian,et al.  Experiment and grey relational analysis of seaweed particle combustion in a fluidized bed , 2013 .

[79]  A. Gupta,et al.  Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics , 2010 .

[80]  Fei Xiu-geng,et al.  Seaweed cultivation: Traditional way and its reformation , 1999 .

[81]  K. Bird,et al.  Seaweed Cultivation for Renewable Resources , 1987 .

[82]  J. Onwudili,et al.  Macroalgae supercritical water gasification combined with nutrient recycling for microalgae cultivation , 2013 .

[83]  M. Huesemann,et al.  Acetone-butanol fermentation of marine macroalgae. , 2012, Bioresource technology.

[84]  Brandon A Yoza,et al.  The analysis of macroalgae biomass found around Hawaii for bioethanol production , 2013, Environmental technology.

[85]  F. Bux,et al.  Biodiesel from microalgae: A critical evaluation from laboratory to large scale production , 2013 .

[86]  S. Kawai,et al.  Strategies for the production of high concentrations of bioethanol from seaweeds , 2013, Bioengineered.

[87]  Phillip E. Savage,et al.  Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. , 2010 .

[88]  Francesco Cherubini,et al.  The biorefinery concept: Using biomass instead of oil for producing energy and chemicals , 2010 .

[89]  E. I. Yantovski Solar energy conversion through seaweed photosynthesis and zero emissions power generation , 2008 .

[90]  Sran Beloevi Modeling Approaches to Predict Biomass Co-firing with Pulverized Coal , 2010 .

[91]  H. B. Gotaas,et al.  Anaerobic digestion of Algae. , 1957, Applied microbiology.

[92]  T. Bridgeman,et al.  Classification of macroalgae as fuel and its thermochemical behaviour. , 2008, Bioresource technology.

[93]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[94]  Y. Zhang,et al.  Production of Bio-oil from Fast Pyrolysis of Macroalgae Enteromorpha prolifera Powder in a Free-fall Reactor , 2013 .

[95]  J. Gressel Transgenics are imperative for biofuel crops , 2008 .

[96]  K. Sopian,et al.  Energy and exergy analyses of solar drying system of red seaweed , 2014 .

[97]  Olivier Bernard,et al.  Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. , 2009, Biotechnology advances.

[98]  Ming Xu,et al.  Corrigendum to "Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance" [Bioresour. Technol. 102 (2011) 159-165] , 2011 .

[99]  Brajendra K Sharma,et al.  Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. , 2012, Bioresource technology.

[100]  Yong-Ki Hong,et al.  Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production , 2013, Journal of Applied Phycology.

[101]  H. Ettouney,et al.  Fundamentals of Salt Water Desalination , 2002 .

[102]  H. R. Sørensen,et al.  Comparison of Lignin, Macroalgae, Wood, and Straw Fast Pyrolysis , 2013 .

[103]  Antonis C. Kokossis,et al.  Glycerol Production by Halophytic Microalgae: Strategy for Producing Industrial Quantities in Saline Water , 2012 .

[104]  P. Weiland Biogas production: current state and perspectives , 2009, Applied Microbiology and Biotechnology.

[105]  R. Service Algae's second try. , 2011, Science.

[106]  Kyung A Jung,et al.  Potentials of macroalgae as feedstocks for biorefinery. , 2013, Bioresource technology.

[107]  A. Klerk Fischer–Tropsch Synthesis , 2011 .

[108]  Willy Verstraete,et al.  The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. , 2011, Bioresource technology.

[109]  Xiaowei Liu,et al.  Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. , 2013, Bioresource technology.

[110]  S. Heaven,et al.  Improving the performance of enzymes in hydrolysis of high solids paper pulp derived from MSW , 2013, Biotechnology for Biofuels.

[111]  F. T. Veld,et al.  Beyond the Fossil Fuel Era: On the Feasibility of Sustainable Electricity Generation Using Biogas from Microalgae , 2012 .

[112]  Sonia Heaven,et al.  Comments on 'Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable'. , 2011, Biotechnology advances.

[113]  A. Ahluwalia,et al.  Microalgae: a promising tool for carbon sequestration , 2012, Mitigation and Adaptation Strategies for Global Change.

[114]  R. Nys,et al.  Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. , 2014, Bioresource technology.

[115]  Antonio Marcilla,et al.  A review of thermochemical conversion of microalgae , 2013 .

[116]  Jean-Philippe Steyer,et al.  Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production , 2012 .

[117]  Jasvinder Singh,et al.  Biomass conversion to energy in India—A critique , 2010 .

[118]  A. Tatem,et al.  Food and Agriculture Organisation of the United Nations , 2009 .

[119]  J. Milledge The challenge of algal fuel: Economic processing of the entire algal biomass , 2010 .

[120]  M. Alvim-Ferraz,et al.  Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept , 2012 .

[121]  Christine Nicole S. Santos,et al.  An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae , 2012, Science.

[122]  L. Laurens,et al.  Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics , 2010 .

[123]  M. Takriff,et al.  Potential of the micro and macro algae for biofuel production: a brief review. , 2013 .

[124]  R. Stahl,et al.  Pyrolysis of algal biomass. , 2013 .

[125]  Michimasa Kishimoto,et al.  Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction , 1995 .

[126]  Michael Hannon,et al.  Biofuels from algae: challenges and potential , 2010, Biofuels.

[127]  A. Faaij,et al.  Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification , 2002 .

[128]  J. Varela,et al.  Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea , 2014, BMC Biotechnology.

[129]  A. Buswell,et al.  The mechanism of the methane fermentation. , 1952, Journal of the American Chemical Society.

[130]  Michele Aresta,et al.  Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study , 2005 .

[131]  T. Miyoshi,et al.  Algal fermentation - the seed for a new fermentation industry of foods and related products. , 2013 .

[132]  Kevin McDonnell,et al.  Biofuel Production in Ireland—An Approach to 2020 Targets with a Focus on Algal Biomass , 2013 .

[133]  Susanne B. Jones,et al.  Macroalgae as a Biomass Feedstock: A Preliminary Analysis , 2010 .

[134]  Susan Løvstad Holdt,et al.  Bioactive compounds in seaweed: functional food applications and legislation , 2011, Journal of Applied Phycology.

[135]  Peter McKendry,et al.  Energy production from biomass (Part 2): Conversion technologies. , 2002, Bioresource technology.

[136]  Y. Jeon,et al.  New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2). , 2012, Bioresource technology.

[137]  Mario R. Tredici,et al.  Photobiology of microalgae mass cultures: understanding the tools for the next green revolution , 2010 .

[138]  S. Sung,et al.  Sodium inhibition of thermophilic methanogens , 2003 .

[139]  S. Mekhilef,et al.  A review on biomass as a fuel for boilers , 2011 .

[140]  F. Blaine Metting,et al.  Biofuels from Microalgae and Seaweeds , 2010 .

[141]  Zohar Yakhini,et al.  Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion technology, and sustainability implications for developing economies , 2014 .

[142]  Nigel W.T. Quinn,et al.  A Realistic Technology and Engineering Assessment of Algae Biofuel Production , 2010 .

[143]  S. Varfolomeev,et al.  Microalgae as source of biofuel, food, fodder, and medicines , 2011, Applied Biochemistry and Microbiology.

[144]  T. Adhya,et al.  Effect of various anionic species on net methane production in flooded rice soils , 1998 .

[145]  Q. Hu,et al.  Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. , 2011, Bioresource technology.

[146]  Qingyu Wu,et al.  Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides , 2000, Journal of Applied Phycology.

[147]  P. Savage,et al.  Kinetic model for supercritical water gasification of algae. , 2012, Physical chemistry chemical physics : PCCP.

[148]  A. M. Buswell,et al.  The Methane Fermentation of Carbohydrates1,2 , 1933 .

[149]  Svein Jarle Horn,et al.  Bioenergy from brown seaweeds , 2000 .

[150]  Valentin Parmon,et al.  Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities , 2005 .

[151]  Paul T. Williams,et al.  The influence of temperature and heating rate on the slow pyrolysis of biomass , 1996 .

[152]  Qin Chen,et al.  Microwave-assisted pyrolysis of microalgae for biofuel production. , 2011, Bioresource technology.

[153]  Yong‐Su Jin,et al.  Marine macroalgae: an untapped resource for producing fuels and chemicals. , 2013, Trends in biotechnology.

[154]  Young-Kwon Park,et al.  Catalytic conversion of Laminaria japonica over microporous zeolites , 2012 .

[155]  Yebo Li,et al.  Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. , 2012, Bioresource technology.

[156]  S. Renganathan,et al.  Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca. , 2012, Bioresource technology.

[157]  T. Sakou,et al.  Seaweed Bioethanol Production in Japan - The Ocean Sunrise Project , 2007, OCEANS 2007.

[158]  Jianjun Du,et al.  The production of butanol from Jamaica bay macro algae , 2012 .

[159]  F Delrue,et al.  An economic, sustainability, and energetic model of biodiesel production from microalgae. , 2012, Bioresource technology.

[160]  D. Karakashev,et al.  Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. , 2013, Bioresource technology.

[161]  Yong-Ki Hong,et al.  Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii) , 2011, Bioprocess and Biosystems Engineering.

[162]  Phillip E. Savage,et al.  Gasification of alga Nannochloropsis sp. in supercritical water , 2012 .

[163]  W. Black The preservation of seaweed by ensiling and bactericides , 1955 .

[164]  K. Das,et al.  Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-Oil Production from Microalgae , 2011 .

[165]  A. Ross,et al.  Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. , 2011, Bioresource technology.