Reverse-magnetic-field reciprocity in conductive samples with extended contacts

This paper reports on the extension of the reverse-magnetic-field reciprocity (RMFR) principle to electrically linear devices with arbitrary shape and extended contacts. The RMFR principle is a consequence of Onsager’s relation for the conductivity tensor depending on the magnetic field. It states the identity of resistance measurements on linearly conductive four-contact samples in a magnetic field B upon contact switching and magnetic field reversal. The previously available proof was restricted to samples with pointlike contacts and thus did not directly apply to real devices. Implications for two-contact and three-contact structures, for planar and symmetric devices, and the use of the structures as magnetic sensors are discussed. Experimental results obtained with complementary metal oxide semiconductor test structures of different geometries are in excellent agreement with the theoretical findings.

[1]  Patrick Ruther,et al.  The continuous spinning current (CSC) stress sensor method for the extraction of two stress components in an offset compensated manner , 2006 .

[2]  J. Meixner Einfluß einer Umkehrung des Magnetfeldes auf die galvanomagnetischen und thermomagnetischen Effekte , 1939 .

[3]  M. Cornils,et al.  Sheet Resistance Determination Using Symmetric Structures With Contacts of Finite Size , 2007, IEEE Transactions on Electron Devices.

[4]  William J. Bruno,et al.  Reverse‐field reciprocity for conducting specimens in magnetic fields , 1987 .

[5]  Sandra Bellekom,et al.  Offset reduction of Hall plates in three different crystal planes , 1998 .

[6]  R.C. Jaeger,et al.  The van der Pauw stress sensor , 2006, IEEE Sensors Journal.

[7]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[8]  H. Casimir,et al.  The electric resistance of single crystals of bismuth in a magnetic field , 1941 .

[9]  H. B. G. Casimir,et al.  On Onsager's Principle of Microscopic Reversibility , 1945 .

[10]  Jan G. Korvink,et al.  Equivalent circuit model of resistive IC sensors derived with the box integration method , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  P. Mazur,et al.  On onsager's relations in a magnetic field , 1953 .

[12]  J. Haeusler,et al.  Exakte lösungen von potentialproblemen beim Halleffekt durch konforme abbildung , 1966 .

[13]  P. Mazur,et al.  Thermodynamical theory of galvanomagnetic and thermomagnetic phenomena III , 1954 .

[14]  P.J.A. Munter A low-offset spinning-current hall plate , 1990 .

[15]  H. Callen,et al.  The Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects , 1948 .

[16]  Patrick Ruther,et al.  Multidimensional CMOS in-plane stress sensor , 2005 .

[17]  J. Meixner Zur Theorie der elektrischen Transporterscheinungen im Magnetfeld , 1941 .

[18]  E. H. Sondheimer,et al.  The Kelvin relations in thermo-electricity , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  W. R. Thurber,et al.  An Experimental Study of Various Cross Sheet Resistor Test Structures , 1978 .

[20]  Henry Baltes,et al.  Offset reduction in Hall devices by continuous spinning current method , 1998 .