A Sub-Nyquist Rate Compressive Sensing Data Acquisition Front-End

This paper presents a sub-Nyquist rate data acquisition front-end based on compressive sensing theory. The front-end randomizes a sparse input signal by mixing it with pseudo-random number sequences, followed by analog-to-digital converter sampling at sub-Nyquist rate. The signal is then reconstructed using an L1-based optimization algorithm that exploits the signal sparsity to reconstruct the signal with high fidelity. The reconstruction is based on a priori signal model information, such as a multi-tone frequency-sparse model which matches the input signal frequency support. Wideband multi-tone test signals with 4% sparsity in 5~500 MHz band were used to experimentally verify the front-end performance. Single-tone and multi-tone tests show maximum signal to noise and distortion ratios of 40 dB and 30 dB, respectively, with an equivalent sampling rate of 1 GS/s. The analog front-end was fabricated in a 90 nm complementary metal-oxide-semiconductor process and consumes 55 mW. The front-end core occupies 0.93 mm2.

[1]  S. Kirolos,et al.  Analog-to-Information Conversion via Random Demodulation , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[2]  Ying-Hsi Lin,et al.  An 11b 800MS/s Time-Interleaved ADC with Digital Background Calibration , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[3]  Bram Nauta,et al.  A 1.35 GS/s, 10 b, 175 mW Time-Interleaved AD Converter in 0.13 µm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[4]  Yong Ching Lim,et al.  Time-Interleaved Analog-to-Digital-Converter Compensation Using Multichannel Filters , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[6]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[7]  Xi Chen,et al.  Mixed-Signal Parallel Compressive Spectrum Sensing for Cognitive Radios , 2010, Int. J. Digit. Multim. Broadcast..

[8]  Sebastian Hoyos,et al.  Clock-Jitter-Tolerant Wideband Receivers: An Optimized Multichannel Filter-Bank Approach , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Richard G. Baraniuk,et al.  Theory and Implementation of an Analog-to-Information Converter using Random Demodulation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[10]  Minyue Fu,et al.  Linear LMS Compensation for Timing Mismatch in Time-Interleaved ADCs , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Richard Baraniuk,et al.  Compressed Sensing Reconstruction via Belief Propagation , 2006 .

[12]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[13]  T. Miki,et al.  A 6-bit 3.5-GS/s 0.9-V 98-mW Flash ADC in 90-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[14]  Brian M. Sadler,et al.  A Sub-Nyquist Rate Sampling Receiver Exploiting Compressive Sensing , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Koichi Hamashita,et al.  Design of a 79 dB 80 MHz 8X-OSR Hybrid Delta-Sigma/Pipelined ADC , 2010, IEEE Journal of Solid-State Circuits.

[16]  Stephen H. Lewis,et al.  A Four-Channel Time-Interleaved ADC With Digital Calibration of Interchannel Timing and Memory Errors , 2010, IEEE Journal of Solid-State Circuits.

[17]  Sanroku Tsukamoto,et al.  A 9b 100MS/s 1.46mW SAR ADC in 65nm CMOS , 2009, 2009 IEEE Asian Solid-State Circuits Conference.

[18]  L. B. Milstein,et al.  Theory of Spread-Spectrum Communications - A Tutorial , 1982, IEEE Transactions on Communications.

[19]  N. P. van der Meijs,et al.  A 26 $\mu$ W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios , 2011, IEEE Journal of Solid-State Circuits.

[20]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[21]  Boris Murmann,et al.  Power Dissipation Bounds for High-Speed Nyquist Analog-to-Digital Converters , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Ian Galton,et al.  A 130 mW 100 MS/s Pipelined ADC With 69 dB SNDR Enabled by Digital Harmonic Distortion Correction , 2009, IEEE Journal of Solid-State Circuits.

[23]  Brian M. Sadler,et al.  The impact of ADC nonlinearity in a mixed-signal compressive sensing system for frequency-domain sparse signals , 2012, Phys. Commun..

[24]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[25]  Truong Q. Nguyen,et al.  Design of hybrid filter banks for analog/digital conversion , 1998, IEEE Trans. Signal Process..

[26]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[27]  Eric A. M. Klumperink,et al.  Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[28]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[29]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[30]  Tzi-Dar Chiueh,et al.  A Cognitive Radio System Using Discrete Wavelet Multitone Modulation , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[32]  Jerry C. Whitaker,et al.  The Electronics Handbook , 2005 .

[33]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[34]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[35]  B. Murmann,et al.  A 9.4-bit, 50-MS/s, 1.44-mW Pipelined ADC Using Dynamic Source Follower Residue Amplification , 2009, IEEE Journal of Solid-State Circuits.

[36]  Pavan Kumar Hanumolu,et al.  Continuous-Time Input Pipeline ADCs , 2010, IEEE Journal of Solid-State Circuits.

[37]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[38]  Soon-Jyh Chang,et al.  A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure , 2010, IEEE Journal of Solid-State Circuits.

[39]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[40]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[41]  J. Fisher,et al.  A 10-GB/s SONET-compliant CMOS transceiver with low crosstalk and intrinsic jitter , 2004, IEEE Journal of Solid-State Circuits.

[42]  Brian M. Sadler,et al.  Mixed-signal parallel compressed sensing and reception for cognitive radio , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[43]  H. Kobayashi,et al.  Aperture jitter effects in wideband sampling systems , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).

[44]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[45]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[46]  Ian Galton,et al.  A Mostly-Digital Variable-Rate Continuous-Time Delta-Sigma Modulator ADC , 2010, IEEE Journal of Solid-State Circuits.