Quantitative Chemically Specific Coherent Diffractive Imaging of Reactions at Buried Interfaces with Few Nanometer Precision.

We demonstrate quantitative, chemically specific imaging of buried nanostructures, including oxidation and diffusion reactions at buried interfaces, using nondestructive tabletop extreme ultraviolet (EUV) coherent diffractive imaging (CDI). Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither visible microscopy nor atomic force microscopy can image the buried interface. Short wavelength high harmonic beams can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Quantitative analysis shows that the reflected EUV light is extremely sensitive to the formation of multiple oxide layers, as well as interdiffusion of materials occurring at the metal-metal and metal-insulator boundaries deep within the nanostructure with few nanometers precision.

[1]  I. Robinson,et al.  Coherent x-ray diffraction imaging of silicon oxide growth , 1999 .

[2]  L. Névot,et al.  Caractérisation des surfaces par réflexion rasante de rayons X. Application à l'étude du polissage de quelques verres silicates , 1980 .

[3]  Bosheng Zhang,et al.  High contrast 3D imaging of surfaces near the wavelength limit using tabletop EUV ptychography. , 2015, Ultramicroscopy.

[4]  H. Nakajima The discovery and acceptance of the Kirkendall Effect: The result of a short research career , 1997 .

[5]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[6]  J. Miao,et al.  Beyond crystallography: Diffractive imaging using coherent x-ray light sources , 2015, Science.

[7]  D. Joy,et al.  Do SE(II) electrons really degrade SEM image quality? , 2013, Scanning.

[8]  J. Miao,et al.  Three-dimensional coherent X-ray diffraction imaging of a whole , frozen-hydrated cell , 2014 .

[9]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[10]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[11]  M. Murnane,et al.  The attosecond nonlinear optics of bright coherent X-ray generation , 2010 .

[12]  Xiaojing Huang,et al.  Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy. , 2009, Optics express.

[13]  Charles G. Durfee,et al.  Phase Matched Generation of Coherent Soft-X-rays , 1998 .

[14]  Farhad Salmassi,et al.  High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination. , 2012, Optics express.

[15]  Ian McNulty,et al.  Nanoscale imaging of buried structures with elemental specificity using resonant x-ray diffraction microscopy. , 2008, Physical review letters.

[16]  P. Keil,et al.  Investigation of Room Temperature Oxidation of Cu in Air by Yoneda‐XAFS , 2007 .

[17]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[18]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[19]  David L. Windt,et al.  IMD—software for modeling the optical properties of multilayer films , 1998 .

[20]  C. Dumas,et al.  Lensless coherent imaging of proteins and supramolecular assemblies: Efficient phase retrieval by the charge flipping algorithm. , 2013, Journal of structural biology.

[21]  D. Sayre Some implications of a theorem due to Shannon , 1952 .

[22]  J. Miao,et al.  Three-dimensional coherent x-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution. , 2013, Physical review letters.

[23]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[24]  Garth J. Williams,et al.  Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.

[25]  Daniel G. Stearns,et al.  The scattering of x rays from nonideal multilayer structures , 1989 .

[26]  R. Harder,et al.  Coherent X-ray diffraction imaging of strain at the nanoscale. , 2009, Nature materials.

[27]  E. Rau,et al.  Information depth and spatial resolution in BSE microtomography in SEM , 1998 .

[28]  R. Harder,et al.  Coherent X-Ray Diffraction Imaging of Morphology and Strain in Nanomaterials , 2013 .

[29]  S. Hofmann Sputter depth profiling: past, present, and future , 2014 .

[30]  Christina L. Porter,et al.  Spatial, spectral, and polarization multiplexed ptychography. , 2015, Optics express.

[31]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[32]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[33]  E. Lesniewska,et al.  Mode-synthesizing atomic force microscopy for 3D reconstruction of embedded low-density dielectric nanostructures , 2015, Nano Research.

[34]  Sujoy Roy,et al.  Lensless x-ray imaging in reflection geometry , 2011 .

[35]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[36]  P. Dobson,et al.  CORRIGENDUM: Evidence for reaction at the AI-SiO2 interface , 1981 .

[37]  Takeo Watanabe,et al.  Phase Imaging of Extreme-Ultraviolet Mask Using Coherent Extreme-Ultraviolet Scatterometry Microscope , 2013 .

[38]  Geoffrey E. Lloyd,et al.  Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques , 1987, Mineralogical Magazine.

[39]  S. Erlandsen,et al.  HIGH RESOLUTION BACKSCATTER ELECTRON (BSE) IMAGING OF IMMUNOGOLD WITH IN-LENS AND BELOW-THE-LENS FIELD EMISSION SCANNING ELECTRON MICROSCOPES , 1999 .

[40]  A. Diaz,et al.  Translation position determination in ptychographic coherent diffraction imaging. , 2013, Optics express.

[41]  Randy A. Bartels,et al.  Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths , 2002, Science.

[42]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[43]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[44]  J. Rodenburg,et al.  Information multiplexing in ptychography. , 2014, Ultramicroscopy.

[45]  M. Murnane,et al.  Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography , 2013, 1312.2049.

[46]  J. R. Lloyd,et al.  TSV and Cu-Cu direct bond wafer and package-level reliability , 2013, 2013 IEEE 63rd Electronic Components and Technology Conference.

[47]  Zhang Jiang,et al.  Three-dimensional coherent X-ray surface scattering imaging near total external reflection , 2012, Nature Photonics.

[48]  V. Dravid,et al.  Nanoscale Imaging of Buried Structures via Scanning Near-Field Ultrasound Holography , 2005, Science.

[49]  H. Chapman,et al.  X-ray imaging beyond the limits. , 2009, Nature materials.

[50]  J. Miao,et al.  Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy , 2010, Proceedings of the National Academy of Sciences.

[51]  P. Heitjans,et al.  Diffusion in Condensed Matter , 2005 .