Experimental and first-principles studies of high-pressure effects on the structural, electronic, and optical properties of semiconductors and lanthanide doped solids

In this paper we present a broad overview of our recent experimental and theoretical results obtained for different types of materials: CdTe and CuGa1−xInxS2 chalcopyrite semiconductors, GaN/AlN wide band gap semiconductor quantum wells, and lanthanide-doped dielectric materials. The analysis of pressure-induced phase transitions, variations of the band gaps, refractive index and the pressure dependence of optical properties of these materials is discussed. The presented results show that the high pressure technique is a very useful tool for scientific research and development of of light-emitting technologies. It allows for identification of radiative recombination mechanisms in solid-state light emitters. In polar III–nitride semiconductors, ab initio calculations revealed that the pressure-induced change of the band gap plays minor role, whereas the built-in electric field in heterostructures increases with pressure thus affecting their basic physical properties, i.e., producing a large red-shift of the photoluminescence and lowering the quantum efficiency due to the quantum confined Stark effect. For wide (>4 nm) quantum wells, the reduction of the band-to-band emission efficiency leads to deep defect dominant emission which is almost pressure independent. The observed behavior proves that pressure investigations combined with ab initio calculations can identify the nature of the optical transitions and the main physical factors affecting the radiative efficiency in polar quantum well systems. Furthermore, high pressure studies of the emission and excitation spectra of Y2O2S doped with Tb3+ and Eu3+ allowed estimating the energies of the ground states of all divalent and trivalent lanthanide ions in respect to the valence and conduction band edges of the Y2O2S host. Band gap energy and difference between energies of the ground states of lanthanide ions and band edges have been calculated as a function of pressure. It is shown that pressure causes an increase of the energy of localized states related to the lanthanide ions with respect to the valence band, and an increase of the band gap energy.

[1]  E. Monroy,et al.  High pressure and time resolved studies of optical properties of n-type doped GaN/AlN multi-quantum wells: Experimental and theoretical analysis , 2016 .

[2]  B. Kukliński,et al.  Spectroscopic properties and location of the Tb(3+) and Eu(3+) energy levels in Y2O2S under high hydrostatic pressure. , 2016, Physical chemistry chemical physics : PCCP.

[3]  S. Krukowski,et al.  Influence of pressure on the properties of GaN/AlN multi-quantum wells – Ab initio study , 2016 .

[4]  David Vanderbilt,et al.  Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides , 2016, 1605.07629.

[5]  T. Malin,et al.  Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5 , 2016 .

[6]  C. Grund,et al.  Very slow decay of a defect related emission band at 2.4 eV in AlN: Signatures of the Si related shallow DX state , 2016 .

[7]  J. Ueda,et al.  Spectroscopic properties and location of the Ce(3+) energy levels in Y3Al2Ga3O12 and Y3Ga5O12 at ambient and high hydrostatic pressure. , 2016, Physical chemistry chemical physics : PCCP.

[8]  E. Monroy,et al.  Correlation of optical and structural properties of GaN/AlN multi-quantum wells—Ab initio and experimental study , 2016 .

[9]  E. Cavalli,et al.  Energy levels in CaWO4:Tb(3+) at high pressure. , 2015, Physical chemistry chemical physics : PCCP.

[10]  T. Suski,et al.  Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices , 2015 .

[11]  Y. Wang,et al.  Ab initio calculations of the structural, electronic and elastic properties of the MZN2 (M=Be, Mg; Z=C, Si) chalcopyrite semiconductors , 2015, 1504.04440.

[12]  M. Brik,et al.  First principles studies of the structural, electronic and optical properties of LiInSe2 and LiInTe2 chalcopyrite crystals , 2014, 1410.7489.

[13]  Sushil Auluck,et al.  Dispersion of the linear and nonlinear optical susceptibilities of the CuAl(S1−xSex)2mixed chaclcopyrite compounds , 2014 .

[14]  S. Mahlik,et al.  High pressure effect on charge transfer transition in Y2O2S:Eu3+ , 2014 .

[15]  A. Speghini,et al.  Pressure evolution of luminescence in SrxBa1−x(NbO2)3:Pr3+ (x=1/2 and 1/3) , 2014 .

[16]  M. Piasecki,et al.  Structural, electronic, and optical features of CuAl(S(1-x)Se(x))2 solar cell materials. , 2014, Inorganic chemistry.

[17]  E. Cavalli,et al.  Luminescence of CaWO4:Pr3+ and CaWO4:Tb3+ at ambient and high hydrostatic pressures , 2013 .

[18]  T. Wojtowicz,et al.  Theoretical studies of the pressure-induced zinc-blende to cinnabar phase transition in CdTe and thermodynamical properties of each phase , 2013 .

[19]  M. Brik,et al.  First-principles calculations of the structural, electronic, optical and elastic properties of the CuYS2 semiconductor , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  M. Brik,et al.  Tailoring the electronic and elastic properties by varying the composition of the CuGa1−xAlxS2 chalcopyrite semiconductor , 2013, 1304.4790.

[21]  E. Cavalli,et al.  High pressure luminescence spectra of CaMoO4:Ln3+ (Ln = Pr, Tb) , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  S. Mahlik,et al.  Impurity trapped exciton states related to rare earth ions in crystals under high hydrostatic pressure , 2013 .

[23]  S. Mahlik,et al.  Luminescence of Gd2(WO4)3:Ln3+ at ambient and high hydrostatic pressure , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  E. Cavalli,et al.  Pressure effects on the luminescence properties of CaWO4:Pr3+ , 2012 .

[25]  E. Cavalli,et al.  High pressure luminescence spectra of CaMoO4:Pr3+ , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  P. Dorenbos Modeling the chemical shift of lanthanide 4f electron binding energies , 2012 .

[27]  M. Brik Electronic, optical and elastic properties of CuXS2 (X=Al, Ga, In) and AgGaS2 semiconductors from first‐principles calculations , 2011 .

[28]  M. Grinberg Excited states dynamics under high pressure in lanthanide-doped solids , 2011 .

[29]  Christos Thomidis,et al.  AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy , 2011 .

[30]  P. Dorenbos,et al.  Lanthanide level location in transition metal complex compounds , 2010 .

[31]  P. Dorenbos,et al.  Luminescence dynamics in Tb(3+)-doped CaWO(4) and CaMoO(4) crystals. , 2010, Inorganic chemistry.

[32]  T. Suski,et al.  In-clustering induced anomalous behavior of band gap in InAlN and InGaN , 2010 .

[33]  Poul Georg Moses,et al.  Band bowing and band alignment in InGaN alloys , 2010 .

[34]  M. Brik First-principles study of the electronic and optical properties of CuXS2 (X = Al, Ga, In) and AgGaS2 ternary compounds , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Marco Bettinelli,et al.  Luminescence of Ca(NbO3)2:Pr3+ at ambient and high hydrostatic pressure , 2009 .

[36]  L. Fonseca,et al.  Accurate prediction of the `Si/SiO IND.2´ interface band offset using the self-consistent ab initio DFT/LDA-1/2 method , 2009 .

[37]  P. Dorenbos,et al.  Charge transfer transitions and location of the rare earth ion energy levels in Ca-α-SiAlON , 2009 .

[38]  N. Grandjean,et al.  Different pressure behavior of GaN/AlGaN quantum structures grown along polar and nonpolar crystallographic directions , 2009 .

[39]  E. Cavalli,et al.  High pressure evolution of YVO4:Pr3+ luminescence , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  S. Mahlik,et al.  Impurity-trapped excitons: Experimental evidence and theoretical concept , 2008 .

[41]  E. Feltin,et al.  Pressure-induced piezoelectric effects in near-lattice-matched GaN/AlInN quantum wells , 2008 .

[42]  L. Schowalter,et al.  AlN Bandgap Temperature Dependence from its Optical Properties , 2008 .

[43]  Lara K. Teles,et al.  Approximation to density functional theory for the calculation of band gaps of semiconductors , 2008, 0808.0729.

[44]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[45]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[46]  R. Mahiou,et al.  Luminescence properties of Pr3+ in titanates and vanadates: Towards a criterion to predict 3P0 emission quenching , 2006 .

[47]  C. Guillén,et al.  Structure, morphology and optical properties of CuInS2 thin films prepared by modulated flux deposition , 2005 .

[48]  R. Ahuja,et al.  Electronic, elastic, and optical properties of Y2O2S , 2005 .

[49]  R. Mahiou,et al.  Excited state dynamics of Pr3+ in YVO4 crystals , 2004 .

[50]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[51]  P. Dorenbos Systematic behaviour in trivalent lanthanide charge transfer energies , 2003 .

[52]  M. Shur,et al.  Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping , 2003 .

[53]  Andreas Hangleiter,et al.  Optical properties of nitride heterostructures , 2003 .

[54]  E. Nakazawa The lowest 4f-to-5d and charge-transfer transitions of rare earth ions in YPO4 hosts , 2002 .

[55]  C. Menoni,et al.  Nonlinear macroscopic polarization in GaN/AlxGa1−xN quantum wells , 2002 .

[56]  T. Endo,et al.  Pressure dependence of the optical-absorption edge of AlN and graphite-type BN , 2002 .

[57]  C. Menoni,et al.  Significant strain dependence of piezoelectric constants in InxGa1-xN/GaN quantum wells , 2001 .

[58]  S. Bedair,et al.  Strain-induced piezoelectric field effects on light emission energy and intensity from AlInGaN/InGaN quantum wells , 2001 .

[59]  Q. Li,et al.  Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys , 2001 .

[60]  J. Massies,et al.  Piezoelectric field and its influence on the pressure behavior of the light emission from GaN/AlGaN strained quantum wells , 2001 .

[61]  L. V. Pieterson,et al.  Charge transfer luminescence of Yb3 , 2000 .

[62]  Nicolas Grandjean,et al.  Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells , 1999 .

[63]  Pierre Lefebvre,et al.  Time-resolved photoluminescence as a probe of internal electric fields in GaN-(GaAl)N quantum wells , 1999 .

[64]  R. Langer,et al.  Giant electric fields in unstrained GaN single quantum wells , 1999 .

[65]  A. Carlo,et al.  EFFECTS OF MACROSCOPIC POLARIZATION IN III-V NITRIDE MULTIPLE QUANTUM WELLS , 1999, cond-mat/9905186.

[66]  N. Cheung,et al.  Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate , 1999 .

[67]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[68]  R. Martin,et al.  Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .

[69]  S. Denbaars,et al.  Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells , 1998 .

[70]  Pierre Lefebvre,et al.  Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells. , 1998 .

[71]  Zhe Chuan Feng,et al.  Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1998 .

[72]  K. Syassen,et al.  Effect of pressure on exciton energies of homoepitaxial GaN , 1998 .

[73]  Umesh K. Mishra,et al.  “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .

[74]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[75]  F. Bernardini,et al.  Electronic dielectric constants of insulators calculated by the polarization method , 1998, cond-mat/9806045.

[76]  J. Im,et al.  Reduction of oscillator strength due to piezoelectric fields in G a N / A l x Ga 1 − x N quantum wells , 1998 .

[77]  Marco Buongiorno Nardelli,et al.  Polarization field effects on the electron-hole recombination dynamics in In0.2Ga0.8N/In1−xGaxN multiple quantum wells , 1997 .

[78]  Oliver Ambacher,et al.  Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films , 1997 .

[79]  D. Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997, cond-mat/9705105.

[80]  J. Bergman,et al.  The excitonic bandgap of GaN: Dependence on substrate , 1997 .

[81]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[82]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[83]  Gerald B. Stringfellow,et al.  Solid phase immiscibility in GaInN , 1996 .

[84]  C. T. Foxon,et al.  Lattice parameters of gallium nitride , 1996 .

[85]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[86]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[87]  Suski,et al.  Towards the identification of the dominant donor in GaN. , 1995, Physical review letters.

[88]  W. Shan,et al.  Pressure‐dependent photoluminescence study of wurtzite GaN , 1995 .

[89]  Briggs,et al.  Native defects in gallium nitride. , 1995, Physical review. B, Condensed matter.

[90]  J. Chervin,et al.  Hydrostatic pressure dependence of the energy gaps of CdTe in the zinc-blende and rocksalt phases , 1995 .

[91]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[92]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[93]  M. Piacentini,et al.  The reflectivity and photoconductivity spectra of Cd1-xFexTe in the 1.0-30.0 eV energy range , 1993 .

[94]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[95]  Allan,et al.  Observation of a high-pressure cinnabar phase in CdTe. , 1993, Physical review. B, Condensed matter.

[96]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[97]  I. Spain Semiconductors at high pressure: New physics with the diamond-anvil cell , 1987 .

[98]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[99]  H. G. Drickamer,et al.  High pressure studies of luminescence efficiency and lifetime in La2O2S:Eu and Y2O2S:Eu , 1980 .

[100]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[101]  S. Block,et al.  The diamond cell stimulates high-pressure research , 1976 .

[102]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[103]  William A. Bassett,et al.  Miniature diamond anvil pressure cell for single crystal x‐ray diffraction studies , 1974 .

[104]  A. Räuber,et al.  ESR and x-ray analysis of the ternary semiconductors CuAlS2, CuInS2 and AgGaS2 , 1973 .

[105]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[106]  S. Mahlik,et al.  Influence of charge transfer state on Eu 3+ luminescence in LaAlO 3 , by high pressure spectroscopy , 2017 .

[107]  J. L. Shay,et al.  Ternary chalcopyrite semiconductors , 2013 .

[108]  P. Dorenbos A Review on How Lanthanide Impurity Levels Change with Chemistry and Structure of Inorganic Compounds , 2013 .

[109]  R. Mahiou,et al.  Red luminescence induced by intervalence charge transfer in Pr3+-doped compounds , 2007 .

[110]  M. Oubaha,et al.  Making red emitting phosphors with Pr3 , 2006 .

[111]  R. Mahiou,et al.  UV-to-red relaxation pathways in CaTiO3:Pr3+ , 2005 .

[112]  P. Dorenbos The Eu3+ charge transfer energy and the relation with the band gap of compounds , 2005 .

[113]  K. Bray High Pressure Probes of Electronic Structure and Luminescence Properties of Transition Metal and Lanthanide Systems , 2001 .

[114]  A. Jayaraman,et al.  Diamond anvil cell and high-pressure physical investigations , 1983 .

[115]  K. Zanio,et al.  Semiconductors and Semimetals Volume 13 Cadmium Telluride , 1978 .

[116]  E. Fluck,et al.  Gmelin handbook of inorganic chemistry , 1975 .

[117]  Universities of Leeds, Sheffield and York , 2022 .