Coarse-Grained Complexity for Dynamic Algorithms

To date, the only way to argue polynomial lower bounds for dynamic algorithms is via fine-grained complexity arguments. These arguments rely on strong assumptions about specific problems such as the Strong Exponential Time Hypothesis (SETH) and the Online Matrix-Vector Multiplication Conjecture (OMv). While they have led to many exciting discoveries, dynamic algorithms still miss out some benefits and lessons from the traditional ``coarse-grained'' approach that relates together classes of problems such as P and NP. In this paper we initiate the study of coarse-grained complexity theory for dynamic algorithms. Below are among questions that this theory can answer. What if dynamic Orthogonal Vector (OV) is easy in the cell-probe model? A research program for proving polynomial unconditional lower bounds for dynamic OV in the cell-probe model is motivated by the fact that many conditional lower bounds can be shown via reductions from the dynamic OV problem. Since the cell-probe model is more powerful than word RAM and has historically allowed smaller upper bounds, it might turn out that dynamic OV is easy in the cell-probe model, making this research direction infeasible. Our theory implies that if this is the case, there will be very interesting algorithmic consequences: If dynamic OV can be maintained in polylogarithmic worst-case update time in the cell-probe model, then so are several important dynamic problems such as $k$-edge connectivity, $(1+\epsilon)$-approximate mincut, $(1+\epsilon)$-approximate matching, planar nearest neighbors, Chan's subset union and 3-vs-4 diameter. The same conclusion can be made when we replace dynamic OV by, e.g., subgraph connectivity, single source reachability, Chan's subset union, and 3-vs-4 diameter. Lower bounds for $k$-edge connectivity via dynamic OV? (see the full abstract in the pdf file).

[1]  Satoru Miyano,et al.  A List of P-Complete Problems , 1989 .

[2]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[3]  Bruce M. Kapron,et al.  Dynamic graph connectivity in polylogarithmic worst case time , 2013, SODA.

[4]  Thomas Schwentick,et al.  Reachability Is in DynFO , 2015, ICALP.

[5]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[6]  Mikkel Thorup,et al.  Planning for Fast Connectivity Updates , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[7]  Mihai Patrascu,et al.  Lower bound techniques for data structures , 2008 .

[8]  Manoj Gupta,et al.  Simple dynamic algorithms for Maximal Independent Set and other problems , 2018, ArXiv.

[9]  Krzysztof Onak,et al.  Fully dynamic maximal independent set with sublinear update time , 2018, STOC.

[10]  Kasper Green Larsen Logarithmic Cell Probe Lower Bounds for Non-Deterministic Static Data Structures , 2011 .

[11]  Kasper Green Larsen,et al.  Faster Online Matrix-Vector Multiplication , 2016, SODA.

[12]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[13]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[14]  Ryan Williams Improving Exhaustive Search Implies Superpolynomial Lower Bounds , 2013, SIAM J. Comput..

[15]  Stephen A. Cook,et al.  The importance of the P versus NP question , 2003, JACM.

[16]  David R. Karger,et al.  Random sampling in cut, flow, and network design problems , 1994, STOC '94.

[17]  Elaine Rich,et al.  Automata, Computability and Complexity: Theory and Applications , 2007 .

[18]  Peter Bro Miltersen Cell probe complexity-a survey , 1999 .

[19]  Mark H. Overmars,et al.  The Design of Dynamic Data Structures , 1987, Lecture Notes in Computer Science.

[20]  David Eppstein,et al.  Sparsification-a technique for speeding up dynamic graph algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[21]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[22]  Hengjie Zhang,et al.  Improved Algorithms for Fully Dynamic Maximal Independent Set , 2018, ArXiv.

[23]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[24]  Hamidreza Jahanjou,et al.  Local Reductions , 2013, ICALP.

[25]  Piotr Sankowski,et al.  Faster dynamic matchings and vertex connectivity , 2007, SODA '07.

[26]  Monika Henzinger,et al.  Fully Dynamic Approximate Maximum Matching and Minimum Vertex Cover in O(log3 n) Worst Case Update Time , 2017, SODA.

[27]  Timothy M. Chan,et al.  Towards an Optimal Method for Dynamic Planar Point Location , 2018, SIAM J. Comput..

[28]  Michael L. Fredman Observations on the Complexity of Generating Quasi-Gray Codes , 1978, SIAM J. Comput..

[29]  Aaron Bernstein,et al.  Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs , 2017, ICALP.

[30]  Christian Wulff-Nilsen,et al.  Dynamic Minimum Spanning Forest with Subpolynomial Worst-Case Update Time , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[31]  Dorit Aharonov,et al.  Lattice problems in NP ∩ coNP , 2005, JACM.

[32]  Evgeny Dantsin,et al.  Exponential Complexity of Satisfiability Testing for Linear-Size Boolean Formulas , 2013, CIAC.

[33]  Greg N. Frederickson Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees , 1997, SIAM J. Comput..

[34]  Krzysztof Onak,et al.  Fully Dynamic MIS in Uniformly Sparse Graphs , 2018, ICALP.

[35]  Shiri Chechik,et al.  Deterministic decremental single source shortest paths: beyond the o(mn) bound , 2016, STOC.

[36]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[37]  Monika Henzinger,et al.  Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture , 2015, STOC.

[38]  Mikkel Thorup,et al.  Dynamic Bridge-Finding in Õ(log2 n) Amortized Time , 2018, SODA.

[39]  Walter L. Ruzzo,et al.  A Compendium of Problems Complete for P (Preliminary) , 1991 .

[40]  Christian Wulff-Nilsen,et al.  Fully-dynamic minimum spanning forest with improved worst-case update time , 2016, STOC.

[41]  Timothy M. Chan A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor queries , 2010, J. ACM.

[42]  Selmer Bringsjord,et al.  P=np , 2004, ArXiv.

[43]  Thomas W. Reps,et al.  On the Computational Complexity of Dynamic Graph Problems , 1996, Theor. Comput. Sci..

[44]  Mikkel Thorup,et al.  Faster Worst Case Deterministic Dynamic Connectivity , 2016, ESA.

[45]  R. Ryan Williams,et al.  Some Estimated Likelihoods for Computational Complexity , 2019, Computing and Software Science.

[46]  Yitong Yin,et al.  Cell-Probe Proofs , 2010, TOCT.

[47]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[48]  Yitong Yin,et al.  Certificates in Data Structures , 2014, ICALP.

[49]  Yoshio Okamoto,et al.  On Problems as Hard as CNF-SAT , 2011, 2012 IEEE 27th Conference on Computational Complexity.

[50]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[51]  David R. Karger,et al.  Random Sampling in Cut, Flow, and Network Design Problems , 1999, Math. Oper. Res..

[52]  Timothy M. Chan,et al.  Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings , 2015, Discrete & Computational Geometry.

[53]  Thomas Schwentick,et al.  Dynamic complexity: recent updates , 2016, SIGL.

[54]  Monika Henzinger,et al.  New deterministic approximation algorithms for fully dynamic matching , 2016, STOC.

[55]  Kasper Green Larsen,et al.  Tight cell probe bounds for succinct Boolean matrix-vector multiplication , 2017, STOC.

[56]  Shiri Chechik,et al.  Deterministic Partially Dynamic Single Source Shortest Paths for Sparse Graphs , 2017, SODA.

[57]  Mikkel Thorup,et al.  Fully-Dynamic Min-Cut* , 2007, Comb..

[58]  Sandeep Sen,et al.  Fully Dynamic Maximal Matching in O (log n) Update Time , 2011, FOCS.

[59]  Mikkel Thorup,et al.  Dynamic Graph Algorithms with Applications , 2000, SWAT.

[60]  Thatchaphol Saranurak,et al.  Dynamic spanning forest with worst-case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time , 2017, STOC.

[61]  Erik D. Demaine,et al.  Logarithmic Lower Bounds in the Cell-Probe Model , 2005, SIAM J. Comput..

[62]  David Eppstein,et al.  Corrigendum: Maintenance of a Minimum Spanning Forest in a Dynamic Plane Graph. , 1993 .

[63]  Oded Goldreich,et al.  On Promise Problems: A Survey , 2006, Essays in Memory of Shimon Even.

[64]  STEPHEN COOK,et al.  The P versus NP Problem , 2010, ArXiv.

[65]  C. SIAMJ.,et al.  NEW LOWER BOUND TECHNIQUES FOR DYNAMIC PARTIAL SUMS AND RELATED PROBLEMS , 2003 .

[66]  Dieter van Melkebeek,et al.  Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses , 1999, STOC '99.

[67]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[68]  Neil Immerman,et al.  Complete problems for dynamic complexity classes , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[69]  Clemens Lautemann,et al.  BPP and the Polynomial Hierarchy , 1983, Inf. Process. Lett..

[70]  Shay Solomon,et al.  Improved Dynamic Graph Coloring , 2018, ESA.

[71]  John H. Reif A Topological Approach to Dynamic Graph Connectivity , 1987, Inf. Process. Lett..

[72]  Rahul Santhanam,et al.  On the Limits of Sparsification , 2012, ICALP.

[73]  Peter Bro Miltersen,et al.  Complexity Models for Incremental Computation , 1994, Theor. Comput. Sci..

[74]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[75]  Monika Henzinger,et al.  Dynamic Algorithms for Graph Coloring , 2017, SODA.

[76]  Mikkel Thorup,et al.  Maintaining information in fully dynamic trees with top trees , 2003, TALG.

[77]  Russell Impagliazzo,et al.  Completeness for First-order Properties on Sparse Structures with Algorithmic Applications , 2017, SODA.

[78]  Mikkel Thorup,et al.  Near-optimal fully-dynamic graph connectivity , 2000, STOC '00.

[79]  Thomas Schwentick,et al.  Dynamic Complexity Theory Revisited , 2005, Theory of Computing Systems.

[80]  Sandeep Sen,et al.  Fully Dynamic Maximal Matching in O(log n) Update Time , 2015, SIAM J. Comput..

[81]  Di Wang,et al.  Expander Decomposition and Pruning: Faster, Stronger, and Simpler , 2018, SODA.

[82]  Giuseppe F. Italiano,et al.  Deterministic Fully Dynamic Data Structures for Vertex Cover and Matching , 2014, SODA.

[83]  Karl Bringmann,et al.  More consequences of falsifying SETH and the orthogonal vectors conjecture , 2018, STOC.

[84]  Yacov Yacobi,et al.  The Complexity of Promise Problems with Applications to Public-Key Cryptography , 1984, Inf. Control..

[85]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[86]  Mihai Patrascu,et al.  Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.

[87]  Kasper Green Larsen,et al.  Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds , 2017, Electron. Colloquium Comput. Complex..

[88]  Russell Impagliazzo,et al.  Nondeterministic Extensions of the Strong Exponential Time Hypothesis and Consequences for Non-reducibility , 2016, Electron. Colloquium Comput. Complex..

[89]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 1998, STOC '98.