Improving Compression Ratio, Area Overhead, and Test Application Time for System-on-a-Chip Test Data Compression/Decompression

This paper proposes a new test data compression/decompression method for systems-on-a-chip. Themethod is based on analyzing the factors that influencetest parameters: compression ratio, area overhead and testapplication time. To improve compression ratio, the newmethod is based on a Variable-length Input Huffman Coding(VIHC), which fully exploits the type and length of the patterns,as well as a novel mapping and reordering algorithmproposed in a pre-processing step. The new VIHC algorithmis combined with a novel parallel on-chip decoder that simultaneouslyleads to low test application time and low areaoverhead. It is shown that, unlike three previous approaches[2, 3, 10] which reduce some test parameters at the expenseof the others, the proposed method is capable of improvingall the three parameters simultaneously. For example, theproposed method leads to similar or better compression ratiowhen compared to frequency directed run-length coding[2], however with lower area overhead and test applicationtime. Similarly, there is comparable or lower area overheadand test application time with respect to Golomb coding [3],with improvements in compression ratio. Finally, there issimilar or improved test application time when comparedto selective coding [10], with reductions in compression ratioand significantly lower area overhead. An experimentalcomparison on benchmark circuits validates the proposedmethod.

[1]  David F. Heidel,et al.  High speed serializing/de-serializing design-for-test method for evaluating a 1 GHz microprocessor , 1998, Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231).

[2]  Dong Sam Ha,et al.  COMPACT: a hybrid method for compressing test data , 1998, Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231).

[3]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[4]  Brion L. Keller,et al.  A SmartBIST variant with guaranteed encoding , 2001, Proceedings 10th Asian Test Symposium.

[5]  Krishnendu Chakrabarty,et al.  System-on-a-chip test-data compression and decompressionarchitectures based on Golomb codes , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Krishnendu Chakrabarty,et al.  Frequency-directed run-length (FDR) codes with application to system-on-a-chip test data compression , 2001, Proceedings 19th IEEE VLSI Test Symposium. VTS 2001.

[7]  Krishnendu Chakrabarty,et al.  Deterministic Built-in Pattern Generation for Sequential Circuits , 1999, J. Electron. Test..

[8]  Aiman H. El-Maleh,et al.  A geometric-primitives-based compression scheme for testing systems-on-a-chip , 2001, Proceedings 19th IEEE VLSI Test Symposium. VTS 2001.

[9]  Irith Pomeranz,et al.  COMPACTEST: a method to generate compact test sets for combinational circuits , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Janak H. Patel,et al.  Test set compaction algorithms for combinational circuits , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[11]  Yervant Zorian,et al.  Towards a standard for embedded core test: an example , 1999, International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034).

[12]  Nur A. Touba,et al.  Test vector decompression via cyclical scan chains and its application to testing core-based designs , 1998, Proceedings International Test Conference 1998 (IEEE Cat. No.98CH36270).

[13]  Yervant Zorian,et al.  Test of future system-on-chips , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[14]  Carlos Delgado Kloos,et al.  Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[15]  Nur A. Touba,et al.  Scan vector compression/decompression using statistical coding , 1999, Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146).

[16]  J.H. Patel,et al.  Test set compaction algorithms for combinational circuits , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[17]  Nur A. Touba,et al.  Using an embedded processor for efficient deterministic testing of systems-on-a-chip , 1999, Proceedings 1999 IEEE International Conference on Computer Design: VLSI in Computers and Processors (Cat. No.99CB37040).