Robust control of unstable systems: algebraic approach using sensitivity functions

This contribution proposes a methodology for robust control of unstable systems. For this purpose the algebraic approach using polynomials is utilized together with tuning some of the closed loop poles using loop sensitivity functions. The control design method is illustrated on the stabilization task of the magnetic levitation system. Complete procedure from derivation of a linearized model to controller design and tuning is described in detail. Finally the methodology proves useful for both stabilization in different operating points and output/load disturbance attenuation. Keywords—Algebraic approach, Magnetic levitation system, Robust control, Sensitivity functions, Unstable systems.

[1]  Vladimír Kučera,et al.  Diophantine equations in control - A survey , 1993, Autom..

[2]  Brian D. O. Anderson,et al.  From Youla-Kucera to Identification, Adaptive and Nonlinear Control , 1998, Autom..

[3]  Ishtiaq Ahmad,et al.  Nonlinear model & controller design for magnetic levitation system , 2010 .

[4]  Frantisek Gazdos,et al.  Polynomial approach to control system design for a magnetic levitation system , 2007, 2007 European Control Conference (ECC).

[5]  Nikolaos Bekiaris-Liberis,et al.  New simple controller tuning rules for integrating and stable or unstable first order plus dead-time processes , 2009, ICONS 2009.

[6]  Pedro Castillo,et al.  Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter , 2004, Autom..

[7]  G. Marchetti,et al.  Identification and control of open-loop unstable processes by relay methods , 2001, Autom..

[8]  J. Kocijan,et al.  Control of unstable systems , 1997 .

[9]  Adrian Roberts Polynomial Methods in Optimal Control and Filtering , 1993 .

[10]  G. Stein,et al.  Respect the unstable , 2003 .

[11]  Sigurd Skogestad,et al.  CONTROL LIMITATIONS FOR UNSTABLE PLANTS , 2002 .

[12]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[13]  Jin Hyun Park,et al.  An Enhanced PID Control Strategy for Unstable Processes , 1998, Autom..

[14]  R. Prokop,et al.  Tracking and disturbance attenuation for unstable systems: algebraic , 2011 .

[15]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[16]  Nikolay V. Kuznetsov,et al.  Stabilization of unstable control system via design of delayed feedback , 2011 .

[17]  Tore Hägglund,et al.  Control of unstable non-minimum-phase delayed systems , 2006 .

[18]  J. Bentsman,et al.  Robust Industrial Control: Optimal Design Approach for Polynomial Systems [Book Reviews] , 1996, IEEE Transactions on Automatic Control.