Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller

[1]  Keisuke Ito,et al.  Chaos in the Rikitake two-disc dynamo system , 1980 .

[2]  V. Haimo Finite time controllers , 1986 .

[3]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[4]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[5]  Lakshmanan,et al.  Drive-response scenario of chaos synchronization in identical nonlinear systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Carroll,et al.  Desynchronization by periodic orbits. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[8]  Lee-Ming Cheng,et al.  Synchronization of spatiotemporal chaos with positive conditional Lyapunov exponents , 1997 .

[9]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[10]  Corron,et al.  Controlling chaos with simple limiters , 2000, Physical review letters.

[11]  C. Mira,et al.  Finite-time global chaos synchronization for piecewise linear maps , 2001 .

[12]  J García-Ojalvo,et al.  Spatiotemporal communication with synchronized optical chaos. , 2000, Physical review letters.

[13]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[14]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[15]  Yu-Ping Tian,et al.  Finite time synchronization of chaotic systems , 2003 .

[16]  S. Bowong Stability analysis for the synchronization of chaotic systems with different order: application to secure communications , 2004 .

[17]  Analysis of a 3D chaotic system , 2006, math/0608568.

[18]  Frank M Hilker,et al.  Paradox of simple limiter control. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[20]  王发强,et al.  Hyperchaos evolved from the Liu chaotic system , 2006 .

[21]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[22]  Rongwei Guo A simple adaptive controller for chaos and hyperchaos synchronization , 2008 .

[23]  Guo Rong-Wei,et al.  Control of a Unified Chaotic System via Single Variable Feedback , 2009 .

[24]  U E Vincent,et al.  Synchronization of chaos in RCL-shunted Josephson junction using a simple adaptive controller , 2009 .

[25]  Wei Zhang,et al.  Finite-time chaos synchronization of unified chaotic system with uncertain parameters , 2009 .

[26]  Wei Zhang,et al.  Finite-time synchronization of uncertain unified chaotic systems based on CLF☆ , 2009 .

[27]  U. Vincent,et al.  A simple adaptive control for full and reduced-order synchronization of uncertain time-varying chaotic systems , 2009 .

[28]  Wenguang Yu Finite-time stabilization of three-dimensional chaotic systems based on CLF , 2010 .

[29]  Jinde Cao,et al.  Finite-time stochastic synchronization of complex networks , 2010 .

[30]  Rongwei Guo,et al.  Finite time stabilization of chaotic systems via single input , 2010 .

[31]  Wenguang Yu,et al.  Stabilization of three-dimensional chaotic systems via single state feedback controller ☆ , 2010 .