Hybrid Emission Modeling of GRB 221009A: Shedding Light on TeV Emission Origins in Long GRBs

Observations of long-duration gamma-ray bursts (GRBs) with TeV emission during their afterglow have been on the rise. Recently, GRB 221009A, the most energetic GRB ever observed, was detected by the Large High Altitude Air Shower Observatory experiment in the energy band 0.2–7 TeV. Here, we interpret its afterglow in the context of a hybrid model in which the TeV spectral component is explained by the proton-synchrotron process while the low-energy emission from optical to X-ray is due to synchrotron radiation from electrons. We constrained the model parameters using the observed optical, X-ray, and TeV data. By comparing the parameters of this burst and of GRB 190114C, we deduce that the VHE emission at energies ≥1 TeV in the GRB afterglow requires large explosion kinetic energy, E ≳ 1054 erg and a reasonable circumburst density, n ≳ 10 cm−3. This results in a small injection fraction of particles accelerated to a power law, ∼10−2. A significant fraction of shock energy must be allocated to a near equipartition magnetic field, ϵ B ∼ 10−1, while electrons should only carry a small fraction of this energy, ϵ e ∼ 10−3. Under these conditions required for a proton-synchrotron model, namely ϵ B ≫ ϵ e , the SSC component is substantially subdominant over proton-synchrotron as a source of TeV photons. These results lead us to suggest that proton-synchrotron process is a strong contender for the radiative mechanisms explaining GRB afterglows in the TeV band.

[1]  Y. N. Liu,et al.  A tera–electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst , 2023, Science.

[2]  J. Granot,et al.  GRB 221009A afterglow from a shallow angular structured jet , 2023, Monthly Notices of the Royal Astronomical Society: Letters.

[3]  Chris L. Fryer,et al.  Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow , 2023, The Astrophysical Journal Letters.

[4]  A. Lutovinov,et al.  Properties of the Extremely Energetic GRB 221009A from Konus-WIND and SRG/ART-XC Observations , 2023, The Astrophysical Journal Letters.

[5]  D. A. Kann,et al.  GRANDMA and HXMT Observations of GRB 221009A: The Standard Luminosity Afterglow of a Hyperluminous Gamma-Ray Burst—In Gedenken an David Alexander Kann , 2023, The Astrophysical Journal Letters.

[6]  A. Levan,et al.  The Radio to GeV Afterglow of GRB 221009A , 2023, The Astrophysical Journal Letters.

[7]  S. Jha,et al.  Limit on Supernova Emission in the Brightest Gamma-Ray Burst, GRB 221009A , 2023, The Astrophysical Journal Letters.

[8]  A. Lien,et al.  GRB 221009A: Discovery of an Exceptionally Rare Nearby and Energetic Gamma-Ray Burst , 2023, The Astrophysical Journal Letters.

[9]  J. Hjorth,et al.  The Optical Light Curve of GRB 221009A: The Afterglow and the Emerging Supernova , 2023, The Astrophysical Journal Letters.

[10]  I. Tamborra,et al.  Probing gamma-ray bursts observed at very high energies through their afterglow , 2023, Monthly Notices of the Royal Astronomical Society.

[11]  R. Yamazaki,et al.  Two-component jet model for multiwavelength afterglow emission of the extremely energetic burst GRB 221009A , 2022, 2212.09266.

[12]  K. Ioka,et al.  External Inverse-compton and Proton Synchrotron Emission from the Reverse Shock as the Origin of VHE Gamma Rays from the Hyper-bright GRB 221009A , 2022, The Astrophysical Journal Letters.

[13]  R. Alfaro,et al.  GRB 221009A: A Light Dark Matter Burst or an Extremely Bright Inverse Compton Component? , 2022, The Astrophysical Journal.

[14]  S. Razzaque,et al.  Ultrahigh-energy cosmic-ray signature in GRB 221009A , 2022, Astronomy & Astrophysics.

[15]  Yun Wang,et al.  The Possibility of Modeling the Very High Energy Afterglow of GRB 221009A in a Wind Environment , 2022, The Astrophysical Journal.

[16]  N. Fraija,et al.  Synchrotron Self-Compton Afterglow Closure Relations and Fermi-LAT-detected Gamma-Ray Bursts , 2022, The Astrophysical Journal.

[17]  L. Nava,et al.  Gamma-Ray Bursts Afterglow Physics and the VHE Domain , 2022, Galaxies.

[18]  T. Piran,et al.  Analytic modeling of synchrotron-self-compton spectra: Application to GRB 190114C , 2021, Monthly Notices of the Royal Astronomical Society.

[19]  Y. J. Yang,et al.  Search for Gamma-Ray Bursts and Gravitational Wave Electromagnetic Counterparts with High Energy X-ray Telescope of Insight-HXMT , 2021, Monthly Notices of the Royal Astronomical Society.

[20]  T. Piran,et al.  GRB Afterglow Parameters in the Era of TeV Observations: The Case of GRB 190114C , 2021, The Astrophysical Journal.

[21]  B. Williams,et al.  Efficiencies of Magnetic Field Amplification and Electron Acceleration in Young Supernova Remnants: Global Averages and Kepler’s Supernova Remnant , 2021, 2106.11195.

[22]  O. Salafia,et al.  Multiwavelength View of the Close-by GRB 190829A Sheds Light on Gamma-Ray Burst Physics , 2021, The Astrophysical Journal Letters.

[23]  L. Oakes,et al.  Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow. , 2021, Science.

[24]  A. Franceschini Photon–Photon Interactions and the Opacity of the Universe in Gamma Rays , 2021, Universe.

[25]  A. Fruchter,et al.  GRB 160625B: Evidence for a Gaussian-shaped Jet , 2020, The Astrophysical Journal.

[26]  K. Toma,et al.  Probing Particle Acceleration through Broadband Early Afterglow Emission of MAGIC Gamma-Ray Burst GRB 190114C , 2020, The Astrophysical Journal.

[27]  L. A. Antonelli,et al.  Observation of inverse Compton emission from a long γ-ray burst , 2019, Nature.

[28]  P. Munar-Adrover,et al.  Teraelectronvolt emission from the γ-ray burst GRB 190114C , 2019, Nature.

[29]  A. Quirrenbach,et al.  A very-high-energy component deep in the γ-ray burst afterglow , 2019, Nature.

[30]  P. Beniamini,et al.  Synchrotron Self-Compton as a Likely Mechanism of Photons beyond the Synchrotron Limit in GRB 190114C , 2019, The Astrophysical Journal.

[31]  Bing Zhang,et al.  Synchrotron Self-Compton Emission from External Shocks as the Origin of the Sub-TeV Emission in GRB 180720B and GRB 190114C , 2019, The Astrophysical Journal.

[32]  Bing Zhang The Physics of Gamma-Ray Bursts , 2018 .

[33]  D. A. Kann,et al.  Four GRB supernovae at redshifts between 0.4 and 0.8 , 2018, Astronomy & Astrophysics.

[34]  S. Nagataki,et al.  Synchrotron self-absorption in GRB afterglows: the effects of a thermal electron population , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  A. Fruchter,et al.  The Environments of the Most Energetic Gamma-Ray Bursts , 2018, The Astrophysical Journal.

[36]  F. Casse,et al.  Relativistic magnetohydrodynamical simulations of the resonant corrugation of a fast shock front , 2017, 1710.08127.

[37]  T. Laskar,et al.  Thermal Electrons in Gamma-Ray Burst Afterglows , 2017, 1706.01885.

[38]  T. Piran,et al.  A revised analysis of gamma-ray bursts’ prompt efficiencies , 2016, 1606.00311.

[39]  T. Piran,et al.  Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows , 2015, 1504.04833.

[40]  C. Boisson,et al.  A hadronic origin for ultra-high-frequency-peaked BL Lac objects , 2014, 1411.5968.

[41]  Bing Zhang,et al.  The physics of gamma-ray bursts & relativistic jets , 2014, 1410.0679.

[42]  D. Thompson,et al.  The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars , 2012, Science.

[43]  S. Razzaque,et al.  Synchrotron radiation from ultra-high energy protons and the Fermi observations of GRB 080916C , 2009, 0908.0513.

[44]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[45]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[46]  T. Sakamoto,et al.  GRB Radiative Efficiencies Derived from the Swift Data: GRBs versus XRFs, Long versus Short , 2006, astro-ph/0610177.

[47]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[48]  M. Medvedev,et al.  Electron Acceleration in Relativistic Gamma-Ray Burst Shocks , 2006, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[49]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[50]  Chris L. Fryer,et al.  The Environments around Long-Duration Gamma-Ray Burst Progenitors , 2006, astro-ph/0604432.

[51]  USA,et al.  Cosmic-Ray Acceleration at Ultrarelativistic Shock Waves: Effects of Downstream Short-Wave Turbulence , 2006, astro-ph/0603363.

[52]  E. Lorenz,et al.  The MAGIC telescope , 2005 .

[53]  B. Revenu,et al.  Relativistic Fermi acceleration with shock compressed turbulence , 2005, astro-ph/0510522.

[54]  E. Pian,et al.  Gamma-ray bursts associated with supernovae: a systematic analysis of BATSE GRB candidates , 2005, astro-ph/0510058.

[55]  E. Waxman,et al.  The Efficiency of Electron Acceleration in Collisionless Shocks and Gamma-Ray Burst Energetics , 2005, astro-ph/0502070.

[56]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[57]  Heather Ting Ma,et al.  Rebrightening of XRF 030723: Further Evidence for a Two-Component Jet in a Gamma-Ray Burst , 2003, astro-ph/0309360.

[58]  D. Frail,et al.  A common origin for cosmic explosions inferred from calorimetry of GRB030329 , 2003, Nature.

[59]  Bing Zhang,et al.  High-Energy Spectral Components in Gamma-Ray Burst Afterglows , 2001, astro-ph/0103229.

[60]  S. Djorgovski,et al.  Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir , 2001, astro-ph/0102282.

[61]  Re'em Sari,et al.  On the Synchrotron Self-Compton Emission from Relativistic Shocks and Its Implications for Gamma-Ray Burst Afterglows , 2000, astro-ph/0005253.

[62]  A. Kumar,et al.  Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media , 2000, astro-ph/0003246.

[63]  J. Chiang,et al.  Beaming, Baryon Loading, and the Synchrotron Self-Compton Component in Gamma-Ray Bursts , 1999, astro-ph/9910240.

[64]  J. Bahcall,et al.  Neutrino Afterglow from Gamma-Ray Bursts: ~1018 eV , 1999, hep-ph/9909286.

[65]  Abraham Loeb,et al.  Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources , 1999, astro-ph/9904363.

[66]  G. Ghisellini,et al.  Quasi-thermal Comptonization and Gamma-Ray Bursts , 1998, astro-ph/9812079.

[67]  Universities Space Research Association,et al.  On the Association of Gamma-Ray Bursts with Supernovae , 1998, astro-ph/9806364.

[68]  T. Totani Very Strong TeV Emission as Gamma-Ray Burst Afterglows , 1998, astro-ph/9805264.

[69]  C. Dermer,et al.  High-energy Gamma Rays from Ultra-high-energy Cosmic-Ray Protons in Gamma-Ray Bursts , 1998, astro-ph/9801027.

[70]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[71]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[72]  M. Rees,et al.  Viewing Angle and Environment Effects in Gamma-Ray Bursts: Sources of Afterglow Diversity , 1997, astro-ph/9709273.

[73]  T. Piran,et al.  Hydrodynamic Timescales and Temporal Structure of Gamma-Ray Bursts , 1995, astro-ph/9508081.

[74]  J. Rhoads,et al.  Radio Transients from Gamma-Ray Bursters , 1993, astro-ph/9307024.

[75]  Tsvi Piran,et al.  Hydrodynamics of relativistic fireballs , 1993, astro-ph/9301004.

[76]  Peter L. Biermann,et al.  Synchrotron Emission from Shock Waves in Active Galactic Nuclei , 1987 .

[77]  R. Blandford,et al.  Fluid dynamics of relativistic blast waves , 1976 .

[78]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[79]  D. Kakkad Radiative Processes in Astrophysics , 2014 .

[80]  Bohdan Paczynski,et al.  A test of the galactic origin of gamma-ray bursts , 1990 .