Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems

Abstract We construct and justify a class of high order methods for the numerical solution of initial and boundary value problems for nonlinear fractional differential equations of the form ( D ∗ α y ) ( t ) = f ( t , y ( t ) ) with Caputo type fractional derivatives D ∗ α y of order α > 0 . Using an integral equation reformulation of the underlying problem we first regularize the solution by a suitable smoothing transformation. After that we solve the transformed equation by a piecewise polynomial collocation method on a mildly graded or uniform grid. Optimal global convergence estimates are derived and a superconvergence result for a special choice of collocation parameters is established. To illustrate the reliability of the proposed algorithms two numerical examples are given.

[1]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[2]  Arvet Pedas,et al.  Spline collocation methods for linear multi-term fractional differential equations , 2011, J. Comput. Appl. Math..

[3]  G. Vainikko,et al.  Approximative methods for nonlinear equations (two approaches to the convergence problem) , 1978 .

[4]  Arvet Pedas,et al.  On the convergence of spline collocation methods for solving fractional differential equations , 2011, J. Comput. Appl. Math..

[5]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[6]  Ralf Metzler,et al.  Fractional Calculus: An Introduction for Physicists , 2012 .

[7]  Hermann Brunner,et al.  Piecewise Polynomial Collocation Methods for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels , 2001, SIAM J. Numer. Anal..

[8]  E. Tamme,et al.  Piecewise Polynomial Collocation for a Class of Fractional Integro-Differential Equations , 2015 .

[9]  Annamaria Palamara Orsi,et al.  A new approach to the numerical solution of weakly singular Volterra integral equations , 2004 .

[10]  Arvet Pedas,et al.  Numerical solution of nonlinear fractional differential equations by spline collocation methods , 2014, J. Comput. Appl. Math..

[11]  Natalia Kopteva,et al.  An efficient collocation method for a Caputo two-point boundary value problem , 2015 .

[12]  Xiaohua Ma,et al.  Numerical solution of fractional integro-differential equations by a hybrid collocation method , 2013, Appl. Math. Comput..

[13]  M. L. Morgado,et al.  Nonpolynomial collocation approximation of solutions to fractional differential equations , 2013 .

[14]  R. Agarwal,et al.  A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , 2010 .

[15]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[16]  Arvet Pedas,et al.  Spline collocation for nonlinear fractional boundary value problems , 2014, Appl. Math. Comput..

[17]  Hermann Brunner,et al.  The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations , 1999, Math. Comput..

[18]  M. Kolk,et al.  Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity , 2009 .

[19]  Hermann Brunner,et al.  Nonpolynomial Spline Collocation for Volterra Equations with Weakly Singular Kernels , 1983 .

[20]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[21]  Petra Ostermann,et al.  Collocation Methods For Volterra Integral And Related Functional Equations , 2016 .

[22]  P. Mokhtary,et al.  SPECTRAL COLLOCATION METHOD FOR MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS , 2014 .

[23]  Arvet Pedas,et al.  Smoothing transformation and spline collocation for linear fractional boundary value problems , 2016, Appl. Math. Comput..

[24]  Arvet Pedas,et al.  Modified spline collocation for linear fractional differential equations , 2015, J. Comput. Appl. Math..

[25]  Arvet Pedas,et al.  Smoothing Transformation and Piecewise Polynomial Collocation for Weakly Singular Volterra Integral Equations , 2004, Computing.

[26]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[27]  Ali H. Bhrawy,et al.  A review of operational matrices and spectral techniques for fractional calculus , 2015 .

[28]  Jingjun Zhao,et al.  Collocation methods for fractional integro-differential equations with weakly singular kernels , 2013, Numerical Algorithms.

[29]  Sean McKee,et al.  Collocation methods for second-kind Volterra integral equations with weakly singular kernels , 1994 .

[30]  Gennadi Vainikko,et al.  Multidimensional Weakly Singular Integral Equations , 1993 .

[31]  Neville J. Ford,et al.  A nonpolynomial collocation method for fractional terminal value problems , 2015, J. Comput. Appl. Math..

[32]  Arvet Pedas,et al.  Piecewise polynomial collocation for linear boundary value problems of fractional differential equations , 2012, J. Comput. Appl. Math..

[33]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[34]  Yuesheng Xu,et al.  A Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels , 2003, SIAM J. Numer. Anal..

[35]  Min Huang,et al.  Superconvergence of the Iterated Hybrid Collocation Method for Weakly Singular Volterra Integral Equations , 2006 .

[36]  Ivan P. Gavrilyuk,et al.  Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..

[37]  G. Vainikko,et al.  High-Order Methods for Volterra Integral Equations with General Weak Singularities , 2009 .