The XMM Cluster Survey: the interplay between the brightest cluster galaxy and the intracluster medium via AGN feedback

Using a sample of 123 X-ray clusters and groups drawn from the XMM Cluster Survey first data release, we investigate the interplay between the brightest cluster galaxy (BCG), its black hole and the intracluster/group medium (ICM). It appears that for groups and clusters with a BCG likely to host significant active galactic nuclei (AGN) feedback, gas cooling dominates in those with T X > 2 keV while AGN feedback dominates below. This may be understood through the subunity exponent found in the scaling relation we derive between the BCG mass and cluster mass over the halo mass range 10 13 < M500 < 10 15 Mand the lack of correlation between radio luminosity and cluster mass, such that BCG AGN in groups can have relatively more energetic influence on the ICM. The LX-T X relation for systems with the most massive BCGs, or those with BCGs co-located with the peak of the ICM emission, is steeper than that for those with the least massive and most offset, which instead follows self-similarity. This is evidence that a combination of central gas cooling and powerful, well fuelled AGN causes the departure of the ICM from pure gravitational heating, with the steepened relation crossing self-similarity at T X = 2 keV. Importantly, regardless of their black hole mass, BCGs are more likely to host radio-loud AGN if they are in a massive cluster (T X 2 keV) and again co-located with an effective fuel supply of dense, cooling gas. This demonstrates that the most massive black holes appear to know more about their host cluster than they do about their host galaxy. The results lead us to propose a physically motivated, empirical definition of 'cluster' and 'group', delineated at 2 keV.

[1]  B. McNamara,et al.  Evidence for AGN Feedback in Galaxy Clusters and Groups , 2011, 1109.3334.

[2]  P. Nulsen,et al.  AVERAGE HEATING RATE OF HOT ATMOSPHERES IN DISTANT CLUSTERS BY RADIO ACTIVE GALACTIC NUCLEUS: EVIDENCE FOR CONTINUOUS ACTIVE GALACTIC NUCLEUS HEATING , 2011, 1107.2946.

[3]  T. Reiprich,et al.  The LX – Tvir relation in galaxy clusters: effects of radiative cooling and AGN heating , 2011, 1106.5185.

[4]  T. Ponman,et al.  HEATING THE HOT ATMOSPHERES OF GALAXY GROUPS AND CLUSTERS WITH CAVITIES: THE RELATIONSHIP BETWEEN JET POWER AND LOW-FREQUENCY RADIO EMISSION , 2011, 1104.2411.

[5]  C. Melioli,et al.  AGN feedback in galaxy groups: the delicate touch of self-regulated outflows , 2011, 1103.5351.

[6]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[7]  C. Collins,et al.  Little change in the sizes of the most massive galaxies since z = 1 , 2011, 1101.4652.

[8]  D. Sijacki,et al.  HIFLUGCS: Galaxy cluster scaling relations between X-ray luminosity, gas mass, cluster radius, and velocity dispersion , 2010, 1011.3018.

[9]  Christopher J. Miller,et al.  The XMM Cluster Survey: X-ray analysis methodology , 2010, 1010.0677.

[10]  V. Springel,et al.  Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters , 2010, 1008.4799.

[11]  J. Stott,et al.  LoCuSS: Connecting the Dominance and Shape of Brightest Cluster Galaxies with the Assembly History of Massive Clusters , 2010, 1007.2196.

[12]  R. Nichol,et al.  THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT , 2010, 1005.4681.

[13]  M. Donahue,et al.  BRIGHTEST CLUSTER GALAXIES AND CORE GAS DENSITY IN REXCESS CLUSTERS , 2009, 0911.2798.

[14]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[15]  V. Springel,et al.  The case for AGN feedback in galaxy groups , 2009, 0911.2641.

[16]  G. Kauffmann,et al.  Clustering of Radio Galaxies and Quasars , 2009, 0910.3667.

[17]  S. Borgani,et al.  Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters , 2009, 0909.0664.

[18]  A. Edge,et al.  LoCuSS: the connection between brightest cluster galaxy activity, gas cooling and dynamical disturbance of X‐ray cluster cores , 2009, 0906.1808.

[19]  P. Martini,et al.  THE EVOLUTION OF ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES TO REDSHIFT 1.3 , 2009, 0906.1843.

[20]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[21]  Robert C. Nichol,et al.  Early assembly of the most massive galaxies , 2009, Nature.

[22]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[23]  J. Schaye,et al.  Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations , 2009, 0902.1535.

[24]  Michael E. Anderson,et al.  HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs , 2009, 0901.4121.

[25]  T. Reiprich,et al.  AGN heating and ICM cooling in the HIFLUGCS sample of galaxy clusters , 2008, 0810.0797.

[26]  G. W. Pratt,et al.  Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS) , 2008, 0809.3784.

[27]  Case Western Reserve University,et al.  HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.

[28]  J. Schaye,et al.  The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.

[29]  R. Mandelbaum,et al.  Halo masses for optically selected and for radio-loud AGN from clustering and galaxy-galaxy lensing , 2008, 0806.4089.

[30]  Christopher J. Miller,et al.  The XMM Cluster Survey: forecasting cosmological and cluster scaling-relation parameter constraints , 2008, 0802.4462.

[31]  D. Wake,et al.  The clustering of radio galaxies at z≃ 0.55 from the 2SLAQ LRG survey , 2008, 0810.1050.

[32]  V. Springel,et al.  Substructures in hydrodynamical cluster simulations , 2008, 0808.3401.

[33]  V. Springel,et al.  Simulations of AGN Feedback in Galaxy Clusters and Groups: Impact on Gas Fractions and the LX-T Scaling Relation , 2008, 0909.3000.

[34]  Edinburgh,et al.  The evolution of the brightest cluster galaxies since z∼ 1 from the ESO Distant Cluster Survey (EDisCS) , 2008, 0804.2152.

[35]  J. Schaye,et al.  Simulating galactic outflows with kinetic supernova feedback , 2008, 0801.2770.

[36]  S. Brough,et al.  The luminosity-halo mass relation for brightest cluster galaxies , 2008, 0801.1170.

[37]  A. M. Swinbank,et al.  Near-infrared evolution of brightest cluster galaxies in the most X-ray luminous clusters since z = 1 , 2007, 0712.0496.

[38]  W. Hartley,et al.  Nature versus nurture: the curved spine of the galaxy cluster X‐ray luminosity–temperature relation , 2007, 0710.3698.

[39]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[40]  J. Schaye,et al.  On the relation between the Schmidt and Kennicutt-Schmidt star formation laws and its implications for numerical simulations , 2007, 0709.0292.

[41]  M. Donahue,et al.  An Infrared Survey of Brightest Cluster Galaxies. II. Why are Some Brightest Cluster Galaxies Forming Stars? , 2007, Proceedings of the International Astronomical Union.

[42]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[43]  D. Zaritsky,et al.  A Census of Baryons in Galaxy Clusters and Groups , 2007, Proceedings of the International Astronomical Union.

[44]  M. Magliocchetti,et al.  The interplay between radio galaxies and cluster environment , 2007 .

[45]  J. Mohr,et al.  Radio Sources in Galaxy Clusters: Radial Distribution, and 1.4 GHz and K-band Bivariate Luminosity Function , 2006, astro-ph/0612521.

[46]  G. Kauffmann,et al.  On the prevalence of radio‐loud active galactic nuclei in brightest cluster galaxies: implications for AGN heating of cooling flows , 2006, astro-ph/0611197.

[47]  K. Dawson,et al.  Radio Sources toward Galaxy Clusters at 30 GHz , 2006, astro-ph/0608274.

[48]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[49]  A. Biviano,et al.  RASS-SDSS galaxy cluster survey - VII. On the cluster mass-to-light ratio and the halo occupation distribution , 2006, astro-ph/0606260.

[50]  G. Kauffmann,et al.  AGN-controlled cooling in elliptical galaxies , 2006 .

[51]  A. Evrard,et al.  The X-Ray Luminosity-Mass Relation for Local Clusters of Galaxies , 2006, astro-ph/0602324.

[52]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[53]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[54]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[55]  Ž. Ivezić,et al.  The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback , 2005 .

[56]  Ž. Ivezić,et al.  The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback , 2005, astro-ph/0506269.

[57]  H. Mo,et al.  Galaxy occupation statistics of dark matter haloes: observational results , 2004, astro-ph/0410114.

[58]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[59]  M. Birkinshaw,et al.  Evidence for radio-source heating of groups , 2004, astro-ph/0411413.

[60]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[61]  P. Best The environmental dependence of radio-loud AGN activity and star formation in the 2dFGRS , 2004 .

[62]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[63]  P. Nulsen,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 A SYSTEMATIC STUDY OF RADIO-INDUCED X-RAY CAVITIES IN CLUSTERS, GROUPS, AND GALAXIES , 2004 .

[64]  P. Thomas,et al.  The merger history of clusters and its effect on the X-ray properties of the intracluster medium , 2003, astro-ph/0310493.

[65]  A. Dressler,et al.  Clusters of Galaxies : Probes of Cosmological Structure and Galaxy Evolution , 2022 .

[66]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[67]  A. Finoguenov,et al.  The Birmingham-CfA cluster scaling project - III. Entropy and similarity in galaxy systems , 2003, astro-ph/0304048.

[68]  P. Ricker,et al.  The Effect of Merger Boosts on the Luminosity, Temperature, and Inferred Mass Functions of Clusters of Galaxies , 2002, astro-ph/0206161.

[69]  F. Pearce,et al.  The effect of cooling and preheating on the X-ray properties of clusters of galaxies , 2002, astro-ph/0205137.

[70]  A. Kravtsov,et al.  Sample Variance Considerations for Cluster Surveys , 2002, astro-ph/0203169.

[71]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[72]  A. Edge The detection of molecular gas in the central galaxies of cooling flow clusters , 2001, astro-ph/0106225.

[73]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[74]  W. Forman,et al.  Evolution of Buoyant Bubbles in M87 , 2000 .

[75]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[76]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[77]  Xiang-Ping Wu,et al.  The LX-T, LX-σ, and σ-T Relations for Groups and Clusters of Galaxies , 2000, astro-ph/0002446.

[78]  T. Ponman,et al.  The intragroup medium in loose groups of galaxies , 2000, astro-ph/0002051.

[79]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[80]  A. Romer,et al.  A Serendipitous Galaxy Cluster Survey with XMM: Expected Catalog Properties and Scientific Applications , 1999, astro-ph/9911499.

[81]  A. Evrard,et al.  The LX—T relation and intracluster gas fractions of X-ray clusters , 1998, astro-ph/9806353.

[82]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[83]  S. Allen,et al.  The impact of cooling flows on the TX–LBol relation for the most luminous clusters , 1998, astro-ph/9802218.

[84]  Maxim Markevitch,et al.  The LX-T Relation and Temperature Function for Nearby Clusters Revisited , 1998, astro-ph/9802059.

[85]  C. Collins,et al.  THE K-BAND HUBBLE DIAGRAM FOR BRIGHTEST CLUSTER GALAXIES IN X-RAY CLUSTERS , 1997, astro-ph/9712104.

[86]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[87]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[88]  L. David,et al.  A Feedback Model for Radio Sources Fueled by Cooling Flows , 1997 .

[89]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[90]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[91]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[92]  A. Edge,et al.  Cooling flows and the X-ray luminosity–temperature relation for clusters , 1994 .

[93]  A. Edge,et al.  EXOSAT observations of clusters of galaxies. I - The X-ray data. II - X-ray to optical correlations , 1991 .

[94]  A. Edge On the relation between the X-ray properties of clusters of galaxies and their brightest cluster member , 1991 .

[95]  G. J. Babu,et al.  Linear regression in astronomy. II , 1990 .

[96]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[97]  A. Fabian,et al.  Cooling flows in clusters of galaxies , 1984, Nature.

[98]  R. Mushotzky X-ray emission from clusters of galaxies , 1984 .

[99]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[100]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[101]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .