X-ray CT and NMR imaging of rocks
暂无分享,去创建一个
In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.