Classifiers for Ground-Based Cloud Images Using Texture Features

The classification of ground-based cloud images has received more attention recently. The result of this work applies to the analysis of climate change; a correct classification is, therefore, important. In this paper, we used 18 texture features to distinguish 7 sky conditions. The important parameters of two classifiers are fine-tuned in the experiment, namely, k-nearest neighbor (k-NN) and artificial neural network (ANN). The performances of the two classifications were compared. Advantages and limitations of both classifiers were discussed. Our result revealed that the k-NN model performed at 72.99% accuracy while the ANN model has higher performance at 86.93% accuracy. We showed that our result is better than previous studies. Finally, seven most effective texture features are recommended to be used in the field of cloud type classification.