Multi-messenger observations of a binary neutron star merger

On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

[1]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[2]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[3]  P. Vinod,et al.  The Cadmium Zinc Telluride Imager on AstroSat , 2016, 1608.03408.

[4]  E. Berger,et al.  A SHORT GAMMA-RAY BURST “NO-HOST” PROBLEM? INVESTIGATING LARGE PROGENITOR OFFSETS FOR SHORT GRBs WITH OPTICAL AFTERGLOWS , 2010, 1007.0003.

[5]  J. Fynbo,et al.  On the nature of the "hostless" short GRBs , 2014, 1402.0766.

[6]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[7]  Enrico Ramirez-Ruiz,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[8]  Philip Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[9]  Octavian Fratu,et al.  Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory , 2015, 1504.05397.

[10]  Georg Weidenspointner,et al.  SPI: The spectrometer aboard INTEGRAL , 2003 .

[11]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[12]  P. G. Isar,et al.  The Pierre Auger Cosmic Ray Observatory , 2015, 1502.01323.

[13]  E. O. Ofek,et al.  GRB 060505: A Possible Short-Duration Gamma-Ray Burst in a Star-forming Region at a Redshift of 0.09 , 2007 .

[14]  G. Di Cocco,et al.  The INTEGRAL mission , 2003 .

[15]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[16]  L. A. Antonelli,et al.  The optical afterglows and host galaxies of three short/hard gamma-ray bursts , 2009, 0901.4038.

[17]  J. R. Hubbard,et al.  ANTARES: the first undersea neutrino telescope , 2011 .

[18]  William H. Lee,et al.  Limits on radioactive powered emission associated with a short-hard GRB 070724A in a star-forming galaxy , 2009, 0908.0030.

[19]  A. Schukraft,et al.  Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube , 2014, 1410.1749.

[20]  William H. Lee,et al.  The Progenitors of Short Gamma-Ray Bursts , 2007 .

[21]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[22]  Ray W. Klebesadel,et al.  Observations of Gamma-Ray Bursts of Cosmic Origin , 1973 .

[23]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[24]  David Blair,et al.  First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts , 2022 .

[25]  Flanagan,et al.  The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.

[26]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[27]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[28]  B. J. Shappee,et al.  Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger , 2017, Science.

[29]  Timing properties of gamma-ray bursts detected by SPI-ACS detector onboard INTEGRAL , 2012, 1203.1344.

[30]  I. Cognard,et al.  Pulsar searches of fermi unassociated sources with the effelsberg telescope , 2013, 1301.0359.

[31]  I. Shklovsky ON THE NATURE OF THE SOURCE OF X-RAY EMISSION OF SCO XR-1. , 1967 .

[32]  A. Richard Thompson,et al.  The Atacama Large Millimeter/Submillimeter Array , 2009, Proceedings of the IEEE.

[33]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[34]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[35]  Paul S. Ray,et al.  Commensal low frequency observing on the NRAO VLA: VLITE status and future plans , 2016, Astronomical Telescopes + Instrumentation.

[36]  Chris L. Fryer,et al.  Swift and NuSTAR observations of GW170817: Detection of a blue kilonova , 2017, Science.

[37]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[38]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[39]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[40]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[41]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[42]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[43]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[44]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[45]  Ehud Nakar,et al.  Short-hard gamma-ray bursts , 2007 .

[46]  M. M. Kasliwal,et al.  A radio counterpart to a neutron star merger , 2017, Science.

[47]  T. Damour,et al.  On the orbital period change of the binary pulsar PSR 1913+16 , 1991 .

[48]  T. Damour,et al.  Strong-field tests of relativistic gravity and binary pulsars. , 1991, Physical review. D, Particles and fields.

[49]  Artem Kuznetsov,et al.  Master Robotic Net , 2010 .

[50]  A. J. van der Horst,et al.  THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: THE FIRST TWO YEARS , 2012, 1201.2981.

[51]  A. J. van der Horst,et al.  THE FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST TWO YEARS , 2012, 1201.3099.

[52]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[53]  Massimo Trifoglio,et al.  The Ibis-Picsit detector onboard Integral , 2003 .

[54]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[55]  O. Tibolla,et al.  Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory , 2017, 1701.01778.

[56]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[57]  Chris L. Fryer,et al.  To be submitted to The Astrophysical Journal Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts , 1999 .

[58]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[59]  M. V. Fonseca,et al.  Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube , 2016 .

[60]  N. R. Tanvir,et al.  GRB 050509B: Constraints on Short Gamma-Ray Burst Models , 2005 .

[61]  J. Bloom,et al.  The Spatial Distribution of Coalescing Neutron Star Binaries , 1998, astro-ph/9805222.

[62]  P. S. Ray,et al.  The LWA1 Radio Telescope , 2012, IEEE Transactions on Antennas and Propagation.

[63]  S. Rosswog,et al.  Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients , 2005, astro-ph/0508138.

[64]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[65]  Naoki Isobe,et al.  The MAXI Mission on the ISS: Science and Instruments for Monitoring All-Sky X-Ray Images , 2009, 0906.0631.

[66]  R. Hulse,et al.  Discovery of a pulsar in a binary system , 1975 .

[67]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[68]  Yunjin Kim,et al.  Nuclear Spectroscopic Telescope Array (NuSTAR) Mission , 2013, 2013 IEEE Aerospace Conference.

[69]  T. Joseph W. Lazio,et al.  RADIO COUNTERPARTS OF COMPACT BINARY MERGERS DETECTABLE IN GRAVITATIONAL WAVES: A SIMULATION FOR AN OPTIMIZED SURVEY , 2016, 1605.09395.

[70]  Jesper Sollerman,et al.  The optical afterglow of the short γ-ray burst GRB 050709 , 2005, Nature.

[71]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[72]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[73]  Saul A. Teukolsky,et al.  White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1983 .

[74]  K. Postnov,et al.  The Evolution of Compact Binary Star Systems , 2006, Living reviews in relativity.

[75]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[76]  A. Lien,et al.  AN ACHROMATIC BREAK IN THE AFTERGLOW OF THE SHORT GRB 140903A: EVIDENCE FOR A NARROW JET , 2016, 1605.03573.

[77]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[78]  J. H. Taylor,et al.  A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .

[79]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[80]  T. Gold Rotating Neutron Stars as the Origin of the Pulsating Radio Sources , 1968, Nature.

[81]  T. Piran,et al.  The Macronova in GRB 050709 and the GRB-macronova connection , 2016, Nature Communications.

[82]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[83]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[84]  Mansi M. Kasliwal,et al.  GALAXY STRATEGY FOR LIGO-VIRGO GRAVITATIONAL WAVE COUNTERPART SEARCHES , 2015, 1508.03608.

[85]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[86]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[87]  M. Tavani,et al.  The AGILE Mission , 2003, 0807.4254.

[88]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[89]  A. Schukraft,et al.  The IceCube Neutrino Observatory: Instrumentation and Online Systems , 2016, 1612.05093.

[90]  M. Kippen,et al.  INTEGRAL spectrometer SPI’s GRB detection capabilities : GRBs detected inside SPI’s FoV and with the anticoincidence system ACS , 2003, astro-ph/0308346.

[91]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[92]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[93]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[94]  T. Gold Rotating Neutron Stars and the Nature of Pulsars , 1969, Nature.

[95]  B. Ramsey,et al.  IBIS: The Imager on-board INTEGRAL , 2003 .

[96]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[97]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[98]  J. Greiner,et al.  THREE YEARS OF FERMI GBM EARTH OCCULTATION MONITORING: OBSERVATIONS OF HARD X-RAY/SOFT GAMMA-RAY SOURCES , 2012, 1201.3585.

[99]  D. Kasen,et al.  OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS , 2013, 1303.5788.

[100]  P. Giommi,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[101]  Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.

[102]  J. Camp,et al.  HIGH-ENERGY ELECTROMAGNETIC OFFLINE FOLLOW-UP OF LIGO-VIRGO GRAVITATIONAL-WAVE BINARY COALESCENCE CANDIDATE EVENTS , 2014, 1410.0929.

[103]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[104]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[105]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[106]  S. E. Persson,et al.  DEMOGRAPHICS OF THE GALAXIES HOSTING SHORT-DURATION GAMMA-RAY BURSTS , 2013, 1302.3221.

[107]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[108]  S. B. Cenko,et al.  The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a , 2006 .

[109]  F. Zwicky,et al.  Remarks on Super-Novae and Cosmic Rays , 1934 .

[110]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants { II. Radioactively powered transients , 2013, 1307.2943.

[111]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[112]  S. B. Cenko,et al.  A New Population of High-Redshift Short-Duration Gamma-Ray Bursts , 2007 .

[113]  E. Ramirez-Ruiz,et al.  The Galaxy Hosts and Large-Scale Environments of Short-Hard Gamma-Ray Bursts , 2005, astro-ph/0510022.

[114]  Leo P. Singer,et al.  WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .

[115]  J. Lattimer,et al.  The tidal disruption of neutron stars by black holes in close binaries. , 1976 .

[116]  Roland Diehl,et al.  THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: FOUR YEARS OF DATA , 2014, 1401.5069.

[117]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[118]  Tsvi Piran,et al.  Detectable radio flares following gravitational waves from mergers of binary neutron stars , 2011, Nature.

[119]  Edo Berger,et al.  A DECADE OF SHORT-DURATION GAMMA-RAY BURST BROADBAND AFTERGLOWS: ENERGETICS, CIRCUMBURST DENSITIES, AND JET OPENING ANGLES , 2015, 1509.02922.

[120]  S. B. Cenko,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[121]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[122]  E. Berger,et al.  THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS , 2013, 1307.0819.

[123]  Giancarlo Cusumano,et al.  Different progenitors of short hard gamma-ray bursts , 2007, 0711.3034.

[124]  Formation of double compact objects , 2006, astro-ph/0612144.

[125]  J.-L. Atteia,et al.  Discovery of the short γ-ray burst GRB 050709 , 2005, Nature.

[126]  A. Hopkins,et al.  Science with the Australian Square Kilometre Array Pathfinder , 2007, Publications of the Astronomical Society of Australia.

[127]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[128]  V. S. Dhillon,et al.  A list of galaxies for gravitational wave searches , 2011, 1103.0695.

[129]  P. Giommi,et al.  An origin for short γ-ray bursts unassociated with current star formation , 2005, Nature.

[130]  A. Tutukov,et al.  Evolution of massive close binaries and formation of neutron stars and black holes , 1976 .

[131]  E. Nakar,et al.  The electromagnetic signals of compact binary mergers , 2012, 1204.6242.

[132]  B. Metzger,et al.  Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger , 2014, 1402.4803.

[133]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[134]  Yue Zhu,et al.  Insight-HXMT observations of the first binary neutron star merger GW170817 , 2017 .

[135]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[136]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[137]  J. Goodman,et al.  Are gamma-ray bursts optically thick? , 1986 .

[138]  R. Giacconi,et al.  Evidence for x Rays From Sources Outside the Solar System , 1962 .

[139]  J. Cordes,et al.  Monte Carlo Simulations of Radio Pulsars and Their Progenitors , 1987 .

[140]  David DeBoer,et al.  The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey , 2017, 1705.07581.

[141]  J. Prochaska,et al.  Electromagnetic evidence that SSS17a is the result of a binary neutron star merger , 2017, Science.

[142]  M. Feroci,et al.  SuperAGILE: The hard X-ray imager for the AGILE space mission , 2007, 0708.0123.

[143]  P. Giommi,et al.  Localization and broadband follow-up of the gravitational-wave transient GW150914 , 2016, 1602.08492.

[144]  Bing Zhang,et al.  Jet Breaks in Short Gamma-Ray Bursts. II. The Collimated Afterglow of GRB 051221A , 2006 .

[145]  Tsvi Piran,et al.  Mass ejection from neutron star mergers: different components and expected radio signals , 2015, 1501.01986.

[146]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[147]  P. A. Jensen,et al.  JEM-X: The X-ray monitor aboard INTEGRAL ? , 2003 .

[148]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[149]  Masaomi Tanaka Kilonova/Macronova Emission from Compact Binary Mergers , 2016, 1605.07235.

[150]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[151]  T. Damour,et al.  Experimental constraints on strong-field relativistic gravity , 1992, Nature.

[152]  E. Berger,et al.  AN r-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B , 2013, 1306.3960.

[153]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.