Quantum symmetries and quantum isometries of compact metric spaces

We prove that a compact quantum group with faithful Haar state which has a faithful action on a compact space must be a Kac algebra, with bounded antipode and the square of the antipode being identity. The main tool in proving this is the theory of ergodic quantum group action on $C^*$ algebras. Using the above fact, we also formulate a definition of isometric action of a compact quantum group on a compact metric space, generalizing the definition given by Banica for finite metric spaces, and prove for certain special class of metric spaces the existence of the universal object in the category of those compact quantum groups which act isometrically and are `bigger' than the classical isometry group.

[1]  J. Quaegebeur,et al.  Isometric coactions of compact quantum groups on compact quantum metric spaces , 2010, 1007.0363.

[2]  Adam G. Skalski,et al.  Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.

[3]  Debashish Goswami,et al.  Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.

[4]  Jyotishman Bhowmick Quantum isometry group of the n-tori , 2008, 0803.4434.

[5]  J. Bichon Algebraic quantum permutation groups , 2007, 0710.1521.

[6]  Debashish Goswami,et al.  Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.

[7]  Debashish Goswami Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.

[8]  P. Sołtan Quantum families of maps and quantum semigroups on finite quantum spaces , 2006, math/0610922.

[9]  J. Bichon,et al.  Ergodic Coactions with Large Multiplicity and Monoidal Equivalence of Quantum Groups , 2005, math/0502018.

[10]  T. Banica Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.

[11]  T. Banica Quantum automorphism groups of small metric spaces , 2003, math/0304025.

[12]  J. Kustermans,et al.  Locally compact quantum groups in the von Neumann algebraic setting , 2000, math/0005219.

[13]  Julien Bichon,et al.  Quantum automorphism groups of finite graphs , 1999, math/9902029.

[14]  Shuzhou Wang Structure and Isomorphism Classification of Compact Quantum Groups A_u(Q) and B_u(Q) , 1998, math/9807095.

[15]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[16]  Ann Maes,et al.  Notes on Compact Quantum Groups , 1998, math/9803122.

[17]  Shuzhou Wang,et al.  Free products of compact quantum groups , 1995 .

[18]  P. Podlés Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.

[19]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[20]  T. Arede Manifolds for which the heat kernel is given in terms of geodesic lengths , 1985 .

[21]  G. Pedersen C-Algebras and Their Automorphism Groups , 1979 .

[22]  S. Woronowicz Compact quantum groups , 2000 .

[23]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[24]  F. Boca Ergodic actions of compact matrix pseudogroups on $C^*$-algebras , 1995 .