Development and assessment of broadband surface albedo from Clouds and the Earth's Radiant Energy System Clouds and Radiation Swath data product

[1] We describe a method to determine broadband albedo globally over land viewed by the Clouds and the Earth's Radiant Energy System (CERES) scanning radiometers on board the TRMM, Terra, and Aqua satellites. This albedo is used as a surface boundary condition for a fast radiation transfer code in the Surface and Atmospheric Radiation Budget (SARB) subsystem of the CERES processing scheme. Cloudy sky surface albedo is estimated from derived clear sky values. Clear sky surface albedo is assessed by comparing the CERES/SARB-based surface albedo with the bidirectional reflectance distribution function (BRDF)–based surface albedo supplied by the MODIS land surfaces group. The SARB method employs broadband observations at the top of atmosphere (TOA) and assumes relative spectral shape of surface albedo. The MODIS group uses higher spatial resolution observations in several shortwave window channels to retrieve spectral surface albedos and then scales up to broadband surface albedo. Comparisons over snow-free land show good agreement between the two independent products on the scale of the CERES footprint. Biases run approximately 0.005 absolute or 0.02 relative with SARB albedo, generally lower than MODIS. We find little dependence on view geometry and slight functional dependence on aerosol optical depth. The value selected for a priori surface spectral albedo is important, but not critical, when retrieving broadband surface albedo with broadband TOA data. However, based on calculations, aerosol forcing to TOA flux changes in spectral albedo shape can affect aerosol forcing for as much as would a 15% absolute change in the original broadband surface albedo.

[1]  W. Landman Climate change 2007: the physical science basis , 2010 .

[2]  Ping Yang,et al.  Snow optical properties for different particle shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica , 2008 .

[3]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[4]  Kees Klein Goldewijk,et al.  Biogeophysical effects of land use on climate : Model simulations of radiative forcing and large-scale temperature change , 2007 .

[5]  Xubin Zeng,et al.  Moderate Resolution Imaging Spectroradiometer bidirectional reflectance distribution function-based albedo parameterization for weather and climate models , 2007 .

[6]  Thomas P. Charlock,et al.  The global surface and atmosphere radiation budget: an assessment of accuracy with 5 years of calculations and observations , 2006 .

[7]  David A. Rutan,et al.  Global surface albedo from CERES/Terra surface and atmospheric radiation budget (SARB) data product , 2006 .

[8]  Alan H. Strahler,et al.  Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[9]  C. Bacour,et al.  Variability of biome reflectance directional signatures as seen by POLDER , 2005 .

[10]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[11]  David R. Doelling,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation , 2005 .

[12]  R. Kahn,et al.  Radiative Transfer Modeling for the CLAMS Experiment , 2005 .

[13]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[14]  Thomas P. Charlock,et al.  Computation of Domain-Averaged Irradiance Using Satellite-Derived Cloud Properties , 2005 .

[15]  Alan H. Strahler,et al.  MODIS bidirectional reflectance distribution function and albedo Climate Modeling Grid products and the variability of albedo for major global vegetation types , 2005 .

[16]  Frédéric Baret,et al.  Multi-sensor data fusion for deriving bio-physical variables in the Cyclopes project , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[17]  William L. Smith,et al.  A parameterization of ocean surface albedo , 2004 .

[18]  Patrick Minnis,et al.  Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data , 2004 .

[19]  Feng Gao,et al.  Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos , 2004 .

[20]  F. Maignan,et al.  Bidirectional reflectance of Earth targets: evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot , 2004 .

[21]  Patrick Minnis,et al.  CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua , 2004, SPIE Remote Sensing.

[22]  C. Woodcock,et al.  Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation , 2003 .

[23]  D. F. Young,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation , 2003 .

[24]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[25]  Jean-Louis Roujean,et al.  Land surface albedo from the synergistic use of polar (EPS) and geo-stationary (MSG) observing systems: An assessment of physical uncertainties , 2002 .

[26]  Paul W. Stackhouse,et al.  The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0 , 2001 .

[27]  William L. Smith,et al.  EOS Terra Aerosol and Radiative Flux Validation: An Overview of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment , 2001 .

[28]  Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform , 2001 .

[29]  W. Collins,et al.  Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX , 2001 .

[30]  W. Guoxiong,et al.  Atmospheric diabatic heating and summertime circulation in Asia—Africa area , 2001 .

[31]  P. Bicheron,et al.  Bidirectional reflectance distribution function signatures of major biomes observed from space , 2000 .

[32]  C. Long,et al.  SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research , 2000 .

[33]  C. Long,et al.  Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects , 2000 .

[34]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[35]  S. Wilcox,et al.  Saudi arabian solar radiation network and data for validating Satellite remote-sensing systems , 1999 .

[36]  M. Leroy,et al.  Surface bidirectional reflectance distribution function observed at global scale by POLDER/ADEOS , 1998 .

[37]  B. McArthur,et al.  Baseline surface radiation network (BSRN/WCRP) New precision radiometry for climate research , 1998 .

[38]  Alan H. Strahler,et al.  Retrieval of land surface albedo from satellite observations: a simulation study , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[39]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[40]  David P. Kratz,et al.  Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document , 1997 .

[41]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[42]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[43]  Arnon Karnieli,et al.  Characteristic spectral reflectance of a semi-arid environment , 1995 .

[44]  Michael Seablom,et al.  Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1 , 1995 .

[45]  Knut Stamnes,et al.  The effect of sea ice on the solar energy budget in the atmosphere‐sea ice‐ocean system: A model study , 1994 .

[46]  Q. Fu,et al.  Parameterization of the Radiative Properties of Cirrus Clouds , 1993 .

[47]  R. Pinker,et al.  Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale , 1992 .

[48]  Robert Benjamin Lee,et al.  Earth Radiation Budget Experiment , 1990 .

[49]  G. Louis Smith,et al.  The Earth Radiation Budget Experiment: Science and implementation , 1986 .

[50]  Patrick Minnis,et al.  Comparison of regional clear-sky albedos inferred from satellite-observations and model computations , 1986 .

[51]  Veerabhadran Ramanathan,et al.  Spectral and diurnal variations in clear sky planetary albedo , 1982 .

[52]  G. Smith,et al.  Deconvolution of wide field-of-view radiometer measurements of earth-emitted radiation. I - Theory , 1981 .

[53]  Shashi,et al.  The Langley Parameterized Shortwave Algorithm ( LPSA ) for Surface Radiation Budget Studies Version 1 . 0 , 2022 .