Supercapacitors Based on Flexible Substrates: An Overview

Recently our modern society is demanding flexible, low-cost, and lightweight electrochemical energy storage systems, which are very important in variety of applications ranging from portable consumer electronics to large industrial-scale power and energy management. Among different energy storage systems, flexible supercapacitors have been considered as one of the most promising candidates due to their significant merits such as high power density along with the unique properties of being flexible, lightweight, shape versatile, and eco-friendly in comparison to other energy storage systems. In this regard, this review article describes the principles of supercapacitors and the recent research progress on flexible supercapacitor electrodes, for which metal substrates, carbon-based paper, conventional paper, textiles, sponges, and cables are used as substrates to fabricate high-performance flexible supercapacitors. Finally, the future challenges and perspectives for the development of flexible supercapacitors based on bendable substrates and their applications are discussed.

[1]  Woo Y. Lee,et al.  Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide , 2011 .

[2]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[3]  Zhanwei Xu,et al.  Electrochemical Supercapacitor Electrodes from Sponge-like Graphene Nanoarchitectures with Ultrahigh Power Density. , 2012, The journal of physical chemistry letters.

[4]  Zhixiang Wei,et al.  Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites , 2011 .

[5]  E. Frąckowiak,et al.  Carbon nanotubes and their composites in electrochemical applications , 2011 .

[6]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[7]  G. Shi,et al.  Graphene Materials for Electrochemical Capacitors. , 2013, The journal of physical chemistry letters.

[8]  Wei Wang,et al.  Assembled graphene oxide and single-walled carbon nanotube ink for stable supercapacitors , 2013 .

[9]  Jumras Limtrakul,et al.  High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper , 2013 .

[10]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[11]  D. Dubal,et al.  All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte , 2013 .

[12]  Wenhui Shi,et al.  High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. , 2011, ACS nano.

[13]  Ronald Österbacka,et al.  Self‐Supported Ion‐Conductive Membrane‐Based Transistors , 2009 .

[14]  Xin Cai,et al.  Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage , 2012, Advanced materials.

[15]  Branko N. Popov,et al.  Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance , 2011 .

[16]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[17]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[18]  Yongsheng Chen,et al.  An overview of the applications of graphene-based materials in supercapacitors. , 2012, Small.

[19]  D. Eder Carbon nanotube-inorganic hybrids. , 2010, Chemical reviews.

[20]  L. Nazar,et al.  Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant , 2010 .

[21]  Siew Hwa Chan,et al.  Graphene‐Based Materials for Energy Conversion , 2012, Advanced materials.

[22]  C. Lokhande,et al.  Big as well as light weight portable, Mn3O4 based symmetric supercapacitive devices: Fabrication, performance evaluation and demonstration , 2012 .

[23]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[24]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[25]  Xin Zhao,et al.  The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. , 2011, Nanoscale.

[26]  H. Althues,et al.  High power supercap electrodes based on vertical aligned carbon nanotubes on aluminum , 2013 .

[27]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[28]  Chi-Hwan Han,et al.  All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes , 2012, Nanotechnology.

[29]  Ye Hou,et al.  Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. , 2010, Nano letters.

[30]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[31]  Guangmin Zhou,et al.  Graphene/metal oxide composite electrode materials for energy storage , 2012 .

[32]  Sun Min Kim,et al.  High-Speed Annealing of Hydrous Ruthenium Oxide Nanoparticles by Intensely Pulsed White Light for Supercapacitors , 2013 .

[33]  Zhong Lin Wang,et al.  Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. , 2012, Nano letters.

[34]  Bin Liu,et al.  NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors , 2013 .

[35]  C. Lokhande,et al.  Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application , 2011 .

[36]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[37]  C. Lokhande,et al.  Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. , 2013, ACS applied materials & interfaces.

[38]  Shuangyin Wang,et al.  Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors , 2013 .

[39]  Steen B. Schougaard,et al.  Conducting‐Polymer/Iron‐Redox‐ Couple Composite Cathodes for Lithium Secondary Batteries , 2007 .

[40]  Hidetaka Konno,et al.  Carbon materials for electrochemical capacitors , 2010 .

[41]  Bo-Yeong Kim,et al.  All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. , 2012, ACS nano.

[42]  G. Hunter,et al.  Interaction of CO with hydrous ruthenium oxide and development of a chemoresistive ambient CO sensor , 2011 .

[43]  Mao-Sung Wu,et al.  Fabrication of Nanostructured Manganese Oxide Electrodes for Electrochemical Capacitors , 2004 .

[44]  P. Audebert,et al.  Highly Conducting and Strongly Adhering Polypyrrole Coating Layers Deposited on Glass Substrates by a Chemical Process , 1998 .

[45]  Stefan Kaskel,et al.  KOH activation of carbon-based materials for energy storage , 2012 .

[46]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[47]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[48]  Juergen Biener,et al.  Advanced carbon aerogels for energy applications , 2011 .

[49]  Shaomin Liu,et al.  Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. , 2012, Small.

[50]  Bin Liu,et al.  Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. , 2013, Small.

[51]  Rudolf Holze,et al.  Demonstrating the Highest Supercapacitive Performance of Branched MnO2 Nanorods Grown Directly on Flexible Substrates using Controlled Chemistry at Ambient Temperature , 2013 .

[52]  G. Lu,et al.  One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal , 2012 .

[53]  Woong Kim,et al.  High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes , 2012, Nanotechnology.

[54]  Yuanyuan Li,et al.  Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. , 2013, Nano letters.

[55]  D. D. Meng,et al.  Scalable high-power redox capacitors with aligned nanoforests of crystalline MnO₂ nanorods by high voltage electrophoretic deposition. , 2013, ACS nano.

[56]  Xing Xie,et al.  Paper supercapacitors by a solvent-free drawing method† , 2011 .

[57]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[58]  Menghe Miao,et al.  High‐Performance Two‐Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays , 2013, Advanced materials.

[59]  Wei Zhang,et al.  Solid-state, flexible, high strength paper-based supercapacitors , 2013 .

[60]  Jun Li,et al.  Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays , 2010 .

[61]  Jiangtian Li,et al.  Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. , 2013, Nanoscale.

[62]  Chi-Chang Hu,et al.  Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors , 2004 .

[63]  Soon Ho Chang,et al.  Symmetric redox supercapacitor with conducting polyaniline electrodes , 2002 .

[64]  Umakant M. Patil,et al.  Microwave assisted chemical bath deposited polyaniline films for supercapacitor application , 2011 .

[65]  Jianlin Shi,et al.  MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. , 2006, The journal of physical chemistry. B.

[66]  G. Wallace,et al.  Novel electrode substrates for rechargeable lithium/polypyrrole batteries , 2005 .

[67]  Ran Liu,et al.  Heterogeneous nanostructured electrode materials for electrochemical energy storage. , 2011, Chemical communications.

[68]  Qiang Sun,et al.  Chemical Synthesis of Carbon Materials with Intriguing Nanostructure and Morphology , 2012 .

[69]  Zhongyuan Huang,et al.  Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites , 2012 .

[70]  Norio Shinya,et al.  Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors , 2011 .

[71]  Andrew Cruden,et al.  Energy storage in electrochemical capacitors: designing functional materials to improve performance , 2010 .

[72]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[73]  Rajesh Rajamani,et al.  Flexible solid-state paper based carbon nanotube supercapacitor , 2012 .

[74]  Chia-Chun Chen,et al.  Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance , 2010 .

[75]  W. J. Ready,et al.  Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates , 2013 .

[76]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[77]  Chandrakant D. Lokhande,et al.  Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor , 2012 .

[78]  Xiaodong Li,et al.  Towards Textile Energy Storage from Cotton T‐Shirts , 2012, Advanced materials.

[79]  Qiang Zhang,et al.  Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density , 2012 .

[80]  Xiaogang Zhang,et al.  Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors , 2011 .

[81]  Qingwen Li,et al.  Ultrastrong, foldable, and highly conductive carbon nanotube film. , 2012, ACS nano.

[82]  Lan Jiang,et al.  Highly Compression‐Tolerant Supercapacitor Based on Polypyrrole‐mediated Graphene Foam Electrodes , 2013, Advanced materials.

[83]  Yuki Yamada,et al.  Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode , 2012 .

[84]  E. Frąckowiak,et al.  Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites , 2004 .

[85]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[86]  Qingwen Li,et al.  Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. , 2013, ACS applied materials & interfaces.

[87]  Woong Kim,et al.  Characterization of graphene-based supercapacitors fabricated on Al foils using Au or Pd thin films , 2010 .

[88]  Zeng-min Shen,et al.  Carbon fiber paper for fuel cell electrode , 2002 .

[89]  Oh-Shim Joo,et al.  Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness , 2004 .

[90]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[91]  Hui Xia,et al.  Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors , 2013, Scientific Reports.

[92]  Chi-Chang Hu,et al.  Electrochemical and Textural Characteristics of ( Ru ­ Sn ) O x ⋅ n H 2 O for Supercapacitors Effects of Composition and Annealing , 2005 .

[93]  Tae Gwang Yun,et al.  Enhancement of electrochemical performance of textile based supercapacitor using mechanical pre-straining , 2013 .

[94]  Yu-Kuei Hsu,et al.  Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode , 2011 .

[95]  Lili Zhang,et al.  Graphene-based materials as supercapacitor electrodes , 2010 .

[96]  S. Dou,et al.  Electrochemical Deposition of Porous Co ( OH ) 2 Nanoflake Films on Stainless Steel Mesh for Flexible Supercapacitors , 2008 .

[97]  Martin Pumera,et al.  Electrochemistry of graphene: new horizons for sensing and energy storage. , 2009, Chemical record.

[98]  J. Hinestroza,et al.  Smart textiles: tough cotton. , 2008, Nature nanotechnology.

[99]  Tao Wen,et al.  Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. , 2013, ACS nano.

[100]  Yi Cui,et al.  Printed energy storage devices by integration of electrodes and separators into single sheets of paper , 2010 .

[101]  Jun Chen,et al.  Carbon nanotube network modified carbon fibre paper for Li-ion batteries , 2009 .

[102]  C. Lokhande,et al.  Metal oxide thin film based supercapacitors , 2011 .

[103]  J. Baek,et al.  Graphene for energy conversion and storage in fuel cells and supercapacitors , 2012 .

[104]  Jian Chang,et al.  Coaxial fiber supercapacitor using all-carbon material electrodes. , 2013, ACS nano.

[105]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[106]  Min Wei,et al.  Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. , 2013, Small.

[107]  Kwang Man Kim,et al.  Redox supercapacitor using polyaniline doped with Li salt as electrode , 2002 .

[108]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[109]  Soon Huat Tan,et al.  Carbon Nanotubes Applications: Solar and Fuel Cells, Hydrogen Storage, Lithium Batteries, Supercapacitors, Nanocomposites, Gas, Pathogens, Dyes, Heavy Metals and Pesticides , 2012 .

[110]  D. Dhawale,et al.  Stable nanostructured polyaniline electrode for supercapacitor application , 2011 .

[111]  Li Li,et al.  Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes , 2013 .

[112]  F. Béguin,et al.  High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper , 2009 .

[113]  Changsheng Liu,et al.  Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. , 2012, Small.

[114]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[115]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.

[116]  Wei Hu,et al.  Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes , 2013 .

[117]  Peter Andersson,et al.  Active Matrix Displays Based on All‐Organic Electrochemical Smart Pixels Printed on Paper , 2002 .

[118]  H. Teng,et al.  Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors , 2010 .

[119]  C. Lokhande,et al.  Supercapacitors based on electrochemically deposited polypyrrole nanobricks , 2011 .

[120]  Afriyanti Sumboja,et al.  Large Areal Mass, Flexible and Free‐Standing Reduced Graphene Oxide/Manganese Dioxide Paper for Asymmetric Supercapacitor Device , 2013, Advanced materials.

[121]  John B. Goodenough,et al.  Supercapacitor Behavior with KCl Electrolyte , 1999 .

[122]  A. B. Fuertes,et al.  Graphitic mesoporous carbons synthesised through mesostructured silica templates , 2004 .

[123]  Wei Chen,et al.  High energy density supercapacitors using macroporous kitchen sponges , 2012 .

[124]  J. Siirola,et al.  The Global Energy Landscape and Materials Innovation , 2008 .

[125]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[126]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[127]  C. Lokhande,et al.  Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application , 2012 .

[128]  L. Qu,et al.  All‐Graphene Core‐Sheath Microfibers for All‐Solid‐State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles , 2013, Advanced materials.

[129]  H. Fong,et al.  Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors , 2012 .

[130]  C. Lokhande,et al.  Effect of scan rate on the morphology of potentiodynamically deposited β-Co(OH)2 and corresponding supercapacitive performance , 2012 .

[131]  J. Holdren,et al.  Energy and Sustainability , 2007, Science.

[132]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[133]  K. Chattopadhyay,et al.  Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[134]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[135]  Shibing Ye,et al.  Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. , 2013, ACS applied materials & interfaces.

[136]  G. Lu,et al.  Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube , 2009 .

[137]  Y. Tong,et al.  3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. , 2013, Nanoscale.

[138]  Yi Cui,et al.  Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes , 2012 .

[139]  L. Qu,et al.  Dimension-tailored functional graphene structures for energy conversion and storage. , 2013, Nanoscale.

[140]  Maria Forsyth,et al.  Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors , 2007 .

[141]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[142]  M. Skorobogatiy,et al.  Soft capacitor fibers using conductive polymers for electronic textiles , 2010, 1006.5221.

[143]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[144]  D. Dubal,et al.  Self-assembly of stacked layers of Mn3O4 nanosheets using a scalable chemical strategy for enhanced, flexible, electrochemical energy storage , 2013 .

[145]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[146]  F. Luan,et al.  Self-doped polyaniline on functionalized carbon cloth as electroactive materials for supercapacitor , 2012 .

[147]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[148]  S. Dou,et al.  Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors , 2014 .

[149]  Q. Xue,et al.  Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor , 2012 .

[150]  Takeo Yamada,et al.  Extracting the Full Potential of Single‐Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density , 2010, Advanced materials.

[151]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[152]  Byungwoo Kim,et al.  Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers , 2010 .

[153]  D. Dhawale,et al.  Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes , 2013 .

[154]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[155]  Natalie L. Brandell,et al.  Redesigning air cathodes for metal–air batteries using MnOx-functionalized carbon nanofoam architectures☆ , 2012 .

[156]  Chaohe Xu,et al.  Graphene-based electrodes for electrochemical energy storage , 2013 .

[157]  F. Wei,et al.  Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. , 2013, Nanoscale.

[158]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[159]  Nerilso Bocchi,et al.  Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(DMcT) for supercapacitor electrodes , 2013 .

[160]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[161]  Justin C. Lytle,et al.  The right kind of interior for multifunctional electrode architectures: carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D , 2011 .

[162]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[163]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[164]  C. Lokhande,et al.  Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films , 2012 .

[165]  Synthesis of flexible and porous cobalt hydroxide/conductive cotton textile sheet and its application in electrochemical capacitors , 2011 .

[166]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[167]  Ute Zschieschang,et al.  Organic electronics on paper , 2004 .

[168]  Wensheng Yang,et al.  Fabrication of manganese dioxide nanosheet-based thin-film electrode and its electrochemical capacitance performance , 2012 .

[169]  Martin A. Green,et al.  Solar Energy Conversion Toward 1 Terawatt , 2008 .

[170]  Xiaofen Li,et al.  Progress of electrochemical capacitor electrode materials: A review , 2009 .

[171]  C. Lokhande,et al.  Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties , 2013 .

[172]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[173]  Mianqi Xue,et al.  Structure‐Based Enhanced Capacitance: In Situ Growth of Highly Ordered Polyaniline Nanorods on Reduced Graphene Oxide Patterns , 2012 .