Thermodynamics of Size Effect on Phase Transition Temperatures of Dispersed Phases

An equation for a phase transition in a dispersed system has been proposed, and the applications of the equation in various kinds of phase transitions have been discussed. The determinate relation between the interfacial tension and the radius of a droplet has been derived by the monolayer model. Applying the fusion transition equation and the interfacial tension relation, the melting temperatures of Au and Sn nanoparticles have been calculated, and the predicted melting temperatures are in good agreement with the available experimental data. The research results show that the phase transition equations can be applied to predict the temperatures of phase transitions of dispersed systems and to explain the phenomenon of metastable states; that the size of a dispersed phase has a remarkable effect on the phase transition temperatures, and the phase transition temperatures decrease with the radius of the dispersed phase decreasing; and that the depression of the melting temperature for a nanowire is half of ...

[1]  C. He,et al.  Melting of Cu Nanowires: A Study Using Molecular Dynamics Simulation , 2010 .

[2]  A. Safaei Shape, Structural, and Energetic Effects on the Cohesive Energy and Melting Point of Nanocrystals , 2010 .

[3]  V. Samsonov,et al.  On thermodynamic stability conditions for nanosized particles , 2003 .

[4]  Yongqiang Xue,et al.  The Thermodynamic Relations between the Melting Point and the Size of Crystals , 2001 .

[5]  W. Jesser,et al.  Thermodynamic theory of size dependence of melting temperature in metals , 1977, Nature.

[6]  Q. Jiang,et al.  Comparison of different models for melting point change of metallic nanocrystals , 2001 .

[7]  P. Li,et al.  Size-, Shape-, and Dimensionality-Dependent Melting Temperatures of Nanocrystals , 2009 .

[8]  H. Ye,et al.  Three distinctive melting mechanisms in isolated nanoparticles , 2001 .

[9]  M. Mirjalili,et al.  Prediction of nanoparticles’ size-dependent melting temperature using mean coordination number concept , 2008 .

[10]  K. Lu,et al.  MELTING AND FREEZING BEHAVIOR OF EMBEDDED NANOPARTICLES IN BALL-MILLED Al-10 WT% M (M = In, Sn, Bi, Cd, Pb) MIXTURES , 1998 .

[11]  W. Qi Size effect on melting temperature of nanosolids , 2005 .

[12]  Y. Shibuta,et al.  Growth and melting of nanoparticles in liquid iron: A molecular dynamics study , 2009 .

[13]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[14]  Frank G. Shi,et al.  Size dependent thermal vibrations and melting in nanocrystals , 1994 .

[15]  M. A. Shandiz,et al.  Melting entropy and enthalpy of metallic nanoparticles , 2008 .

[16]  Zhenyuan Zhang,et al.  Size-dependent melting of silica-encapsulated gold nanoparticles. , 2002, Journal of the American Chemical Society.

[17]  Choi,et al.  Size-dependent melting temperature of individual nanometer-sized metallic clusters. , 1990, Physical review. B, Condensed matter.

[18]  V. Lubashenko Size-dependent melting of nanocrystals: a self-consistent statistical approach , 2010 .

[19]  Jianfeng,et al.  The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems , 1997, Journal of colloid and interface science.

[20]  Yongqiang Xue,et al.  The effect of microdroplet size on the surface tension and Tolman length. , 2011, The journal of physical chemistry. B.

[21]  M. A. Shandiz,et al.  Modeling the Melting Temperature of Nanoparticles by an Analytical Approach , 2008 .

[22]  B. Y. Huang,et al.  Modeling the thermodynamic properties of bimetallic nanosolids , 2010 .

[23]  Eun-Ha Kim,et al.  Size dependency of melting point of crystalline nano particles and nano wires: A thermodynamic modeling , 2009 .

[24]  V. Samsonov,et al.  Size dependence of the surface tension and the problem of Gibbs thermodynamics extension to nanosystems , 2004 .

[25]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[26]  Toshihiro Tanaka,et al.  Thermodynamic Evaluation of Nano-Particle Binary Alloy Phase Diagrams , 2001 .

[27]  Joshua R. Smith,et al.  Universal binding energy curves for metals and bimetallic interfaces , 1981 .

[28]  S. N. Sahu,et al.  Liquid-drop model for the size-dependent melting of low-dimensional systems , 2002 .

[29]  A. P. Chernyshev Effect of nanoparticle size on the onset temperature of surface melting , 2009 .

[30]  Ercolessi,et al.  Premelting of thin wires. , 1994, Physical review. B, Condensed matter.

[31]  V. Skripov,et al.  Size effect on melting of small particles , 1981 .

[32]  Joshua R. Smith,et al.  Scaling relations in the equation of state, thermal expansion, and melting of metals , 1984 .

[33]  H. Reiss,et al.  The effect of surface on melting point. , 1948, Journal of colloid science.

[34]  X. Meng,et al.  Size-dependent thermodynamic properties of metallic nanowires. , 2008, The journal of physical chemistry. B.

[35]  Han‐Ki Kim,et al.  The cluster size dependence of thermal stabilities of both molybdenum and tungsten nanoclusters , 2002 .

[36]  Yongfu Zhu,et al.  Correction to “Modeling of the Melting Point, Debye Temperature, Thermal Expansion Coefficient, and the Specific Heat of Nanostructured Materials” , 2009 .

[37]  Shaoqing Wang,et al.  Size-dependent melting properties of free silver nanoclusters , 2001 .

[38]  Karl -Joseph Hanszen,et al.  Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen , 1960 .

[39]  G. Deutscher,et al.  Solid-liquid transition in ultra-fine lead particles , 1995 .

[40]  Muyu Zhao,et al.  Size-dependent melting point of noble metals , 2003 .

[41]  M. Mitome In-situ observation of melting of fine lead particles by high-resolution electron microscopy , 1999 .

[42]  Schafer,et al.  Melting of isolated tin nanoparticles , 2000, Physical review letters.

[43]  A. Safaei The effect of the averaged structural and energetic features on the cohesive energy of nanocrystals , 2010 .

[44]  L. Buchaillot,et al.  Modeling the Melting Enthalpy of Nanomaterials , 2009 .

[45]  Q. Jiang,et al.  Thermal stability of low dimensional crystals , 2000 .

[46]  J. Wang,et al.  Local atomic structures of palladium nanowire. , 2004, The Journal of chemical physics.

[47]  S. Sankaranarayanan,et al.  Molecular Dynamics Simulation Study of Phase Transformations in Transition Bimetallic Nanowires , 2007 .

[48]  A. R. Novoselov,et al.  Investigation of the microdrop surface tension and the linear tension of the wetting perimeter on the basis of similarity concepts and the thermodynamic perturbation theory , 1999 .

[49]  F. Baletto,et al.  Melting of metallic nanoclusters : Alloying and support effects , 2005 .

[50]  Q. Jiang,et al.  Size effect on melting temperature of nanostructured drugs , 2007 .

[51]  R. A. Bayles,et al.  Small particle melting of pure metals , 1986 .

[52]  Edgar Dutra Zanotto,et al.  Crystal nucleation in silicate glasses: the temperature and size dependence of crystal/liquid surface energy , 2000 .

[53]  J. Sambles An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[54]  J. Schmelzer,et al.  Curvature-Dependent Surface Tension and Nucleation Theory , 1996 .