Foundations and Advances in Data Mining

The Mathematics of Learning.- Logical Regression Analysis: From Mathematical Formulas to Linguistic Rules.- A Feature/Attribute Theory for Association Mining and Constructing the Complete Feature Set.- A New Theoretical Framework for K-means-type Clustering.- Clustering via Decision Tree Construction.- Incremental Mining on Association Rules.- Mining Association Rules from Tabular Data Guided by Maximal Frequent Itemsets.- Sequential Pattern Mining by Pattern-Growth: Principles and Extensions.- Web Page Classification.- Web Mining - Concepts, Applications, and Research Directions.- Privacy-Preserving Data Mining.

[1]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[2]  Enrique H. Ruspini,et al.  Numerical methods for fuzzy clustering , 1970, Inf. Sci..

[3]  R. DeVore,et al.  Optimal nonlinear approximation , 1989 .

[4]  David Wai-Lok Cheung,et al.  A General Incremental Technique for Maintaining Discovered Association Rules , 1997, DASFAA.

[5]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[6]  Edith Cohen,et al.  Finding interesting associations without support pruning , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[7]  Cheng Yang,et al.  Efficient discovery of error-tolerant frequent itemsets in high dimensions , 2001, KDD '01.

[8]  Laks V. S. Lakshmanan,et al.  Constraint-Based Multidimensional Data Mining , 1999, Computer.

[9]  Pankaj K. Agarwal,et al.  Exact and Approximation Algortihms for Clustering , 1997 .

[10]  Ke Wang,et al.  Building Hierarchical Classifiers Using Class Proximity , 1999, VLDB.

[11]  T. T. Lee An algebraic theory of relational databases , 1983, The Bell System Technical Journal.

[12]  Thomas C. Bartee,et al.  Modern Applied Algebra , 1999 .

[13]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[14]  Sanjay Ranka,et al.  An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases , 1997, KDD.

[15]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[16]  Hiroshi Tsukimoto Symbol pattern integration using multilinear functions , 2001 .

[17]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[18]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[19]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Shahar Mendelson,et al.  Improving the sample complexity using global data , 2002, IEEE Trans. Inf. Theory.

[21]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[22]  R. Jancey Multidimensional group analysis , 1966 .

[23]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[24]  Shlomo Moran,et al.  The stochastic approach for link-structure analysis (SALSA) and the TKC effect , 2000, Comput. Networks.

[25]  Gustavo Rossi,et al.  An approach to discovering temporal association rules , 2000, SAC '00.

[26]  Necip Fazil Ayan,et al.  An efficient algorithm to update large itemsets with early pruning , 1999, KDD '99.

[27]  Yoshiaki Kikuchi,et al.  Data Mining from Functional Brain Images , 2000, MDM/KDD.

[28]  Pierre Hansen,et al.  An Interior Point Algorithm for Minimum Sum-of-Squares Clustering , 1997, SIAM J. Sci. Comput..

[29]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[30]  Philip S. Yu,et al.  Using a Hash-Based Method with Transaction Trimming for Mining Association Rules , 1997, IEEE Trans. Knowl. Data Eng..

[31]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[32]  Thomas Serre,et al.  Categorization by Learning and Combining Object Parts , 2001, NIPS.

[33]  Man Hon Wong,et al.  Mining fuzzy association rules in databases , 1998, SGMD.

[34]  Ke Wang,et al.  Mining Frequent Itemsets Using Support Constraints , 2000, VLDB.

[35]  A. Akhmetova Discovery of Frequent Episodes in Event Sequences , 2006 .

[36]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.

[37]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[38]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[39]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[42]  M. Posner,et al.  Images of mind , 1994 .

[43]  Ke Wang,et al.  Clustering transactions using large items , 1999, CIKM '99.

[44]  Joachim Diederich,et al.  Survey and critique of techniques for extracting rules from trained artificial neural networks , 1995, Knowl. Based Syst..

[45]  Hongjun Lu,et al.  Stock movement prediction and N-dimensional inter-transaction association rules , 1998, SIGMOD 1998.

[46]  Philip S. Yu,et al.  A Regression-Based Temporal Pattern Mining Scheme for Data Streams , 2003, VLDB.

[47]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[48]  Philip S. Yu,et al.  Efficient Data Mining for Path Traversal Patterns , 1998, IEEE Trans. Knowl. Data Eng..

[49]  Sourav S. Bhowmick,et al.  Research Issues in Web Data Mining , 1999, DaWaK.

[50]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[51]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[52]  Masaru Kitsuregawa,et al.  Effects of maximum flow algorithm on identifying web community , 2002, WIDM '02.

[53]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[54]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[55]  Charles A. Micchelli,et al.  A Survey of Optimal Recovery , 1977 .

[56]  Christie I. Ezeife,et al.  Mining Incremental Association Rules with Generalized FP-Tree , 2002, Canadian Conference on AI.

[57]  Huan Liu,et al.  IEEE Intelligent Systems , 2019, Computer.

[58]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[59]  Ming-Syan Chen,et al.  Sliding-window filtering: an efficient algorithm for incremental mining , 2001, CIKM '01.

[60]  Tomaso Poggio,et al.  A Novel Approach to Graphics , 1992 .

[61]  Alessandro Verri,et al.  Learning and vision machines , 2002, Proc. IEEE.

[62]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[63]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[65]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[66]  Yoshiaki Kikuchi,et al.  Rule Discovery from fMRI Brain Images by Logical Regression Analysis , 2002, Progress in Discovery Science.

[67]  Tony Ezzat,et al.  Trainable videorealistic speech animation , 2002, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[68]  Wynne Hsu,et al.  Mining association rules with multiple minimum supports , 1999, KDD '99.

[69]  David Wai-Lok Cheung,et al.  Is Sampling Useful in Data Mining? A Case in the Maintenance of Discovered Association Rules , 1998, Data Mining and Knowledge Discovery.

[70]  Alberto O. Mendelzon,et al.  What do the Neighbours Think? Computing Web Page Reputations , 2000, IEEE Data Eng. Bull..

[71]  Joyce Currie Little Bits and bytes , 1996, SG3C.

[72]  Tomaso A. Poggio,et al.  Introduction: Learning and Vision at CBCL , 2004, International Journal of Computer Vision.

[73]  Masaru Kitsuregawa,et al.  An Approach to Build a Cyber-Community Hierarchy , 2002 .

[74]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[75]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[76]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[77]  Osmar R. Zaïane,et al.  Incremental mining of frequent patterns without candidate generation or support constraint , 2003, Seventh International Database Engineering and Applications Symposium, 2003. Proceedings..

[78]  Tsau Young Lin,et al.  Semantics oriented association rules , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[79]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[80]  Won Suk Lee,et al.  Finding recent frequent itemsets adaptively over online data streams , 2003, KDD '03.

[81]  R. Dudley Universal Donsker Classes and Metric Entropy , 1987 .

[82]  C. Lee Giles,et al.  Digital Libraries and Autonomous Citation Indexing , 1999, Computer.

[83]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[84]  S. Smale,et al.  ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .

[85]  Hiroshi Tsukimoto,et al.  The Discovery of Propositions in Noisy Data , 1992, Machine Intelligence 13.

[86]  Chia-Hui Chang,et al.  Enhancing SWF for Incremental Association Mining by Itemset Maintenance , 2003, PAKDD.

[87]  Yi Zhang,et al.  Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.

[88]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[89]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[90]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[91]  Hiroshi Tsukimoto The Discovery of Logical Propositions in Numerical Data , 1994, KDD Workshop.

[92]  叶萍,et al.  β , 2002 .

[93]  Martin Vetterli,et al.  Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.

[94]  S. Mendelson Geometric Parameters in Learning Theory , 2004 .

[95]  Jun-Lin Lin,et al.  Mining association rules: anti-skew algorithms , 1998, Proceedings 14th International Conference on Data Engineering.

[96]  Felipe Cucker,et al.  Best Choices for Regularization Parameters in Learning Theory: On the Bias—Variance Problem , 2002, Found. Comput. Math..

[97]  Philip S. Yu,et al.  Mining Relationship between Triggering and Consequential Events in a Short Transaction Database , 2002, SDM.

[98]  Hiroshi Tsukimoto,et al.  The Discovery of Rules from Brain Images , 1998, Discovery Science.

[99]  Tomaso Poggio,et al.  Image Representations for Visual Learning , 1996, Science.

[100]  Myra Spiliopoulou,et al.  Data Mining for the Web , 1999, PKDD.

[101]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[102]  R. Dudley,et al.  Uniform and universal Glivenko-Cantelli classes , 1991 .

[103]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[104]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[105]  Xiaodong Chen,et al.  Discovering Temporal Association Rules: Algorithms, Language and System , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[106]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[107]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[108]  Hiroshi Tsukimoto,et al.  An inductive learning algorithm based on regression analysis , 1997 .

[109]  Bing Liu,et al.  Querying multiple sets of discovered rules , 2002, KDD.

[110]  Charu C. Aggarwal,et al.  A Tree Projection Algorithm for Generation of Frequent Item Sets , 2001, J. Parallel Distributed Comput..

[111]  Hiroshi Tsukimoto,et al.  Knowledge discovery from numerical data , 1996, Knowl. Based Syst..

[112]  Ben Taskar,et al.  Probabilistic Models of Text and Link Structure for Hypertext Classification , 2001 .

[113]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[114]  Jirí Matousek,et al.  On Approximate Geometric k -Clustering , 2000, Discret. Comput. Geom..

[115]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[116]  Chris H. Q. Ding,et al.  Spectral Relaxation for K-means Clustering , 2001, NIPS.

[117]  Ke Wang,et al.  Discovering typical structures of documents: a road map approach , 1998, SIGIR '98.

[118]  Johannes Gehrke,et al.  Querying and mining data streams: you only get one look a tutorial , 2002, SIGMOD '02.

[119]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[120]  José Manuel Benítez,et al.  Interpretation of artificial neural networks by means of fuzzy rules , 2002, IEEE Trans. Neural Networks.

[121]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[122]  Hiroshi Tsukimoto,et al.  Efficient algorithms for inductive learning - an application of multi-linear functions to inductive learning , 1993, Machine Intelligence 14.

[123]  Ming-Syan Chen,et al.  Progressive Weighted Miner: An Efficient Method for Time-Constraint Mining , 2003, PAKDD.

[124]  Yoshiaki Kikuchi,et al.  Knowledge Discovery from fMRI Brain Images by Logical Regression Analysis , 2000, Discovery Science.

[125]  Hiroshi Tsukimoto,et al.  Extracting rules from trained neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[126]  E. Oja,et al.  Independent Component Analysis , 2013 .

[127]  Jiawei Han,et al.  Maintenance of discovered association rules in large databases: an incremental updating technique , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[128]  Qiming Chen,et al.  PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth , 2001, Proceedings 17th International Conference on Data Engineering.

[129]  Bettina Berendt,et al.  E-privacy in 2nd generation E-commerce: privacy preferences versus actual behavior , 2001, EC '01.

[130]  Grace Wahba Smoothing and Ill-Posed Problems , 1979 .

[131]  Laks V. S. Lakshmanan,et al.  Optimization of constrained frequent set queries with 2-variable constraints , 1999, SIGMOD '99.

[132]  Andreas Mueller,et al.  Fast sequential and parallel algorithms for association rule mining: a comparison , 1995 .

[133]  Hiroshi Tsukimoto Rule Extraction from Prediction Models , 1999, PAKDD.

[134]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[135]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.

[136]  Hannu Toivonen,et al.  Sampling Large Databases for Association Rules , 1996, VLDB.

[137]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[138]  Olvi L. Mangasarian,et al.  Mathematical Programming in Data Mining , 1997, Data Mining and Knowledge Discovery.

[139]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[140]  Federico Girosi,et al.  Generalization bounds for function approximation from scattered noisy data , 1999, Adv. Comput. Math..

[141]  Heikki Mannila,et al.  Rule Discovery from Time Series , 1998, KDD.

[142]  Christie I. Ezeife,et al.  A Low-Scan Incremental Association Rule Maintenance Method Based on the Apriori Property , 2001, Canadian Conference on AI.

[143]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[144]  Heikki Mannila,et al.  Efficient Algorithms for Discovering Association Rules , 1994, KDD Workshop.

[145]  Umeshwar Dayal,et al.  FreeSpan: frequent pattern-projected sequential pattern mining , 2000, KDD '00.

[146]  E. Parzen An Approach to Time Series Analysis , 1961 .

[147]  William A. Woods,et al.  What's in a Link: Foundations for Semantic Networks , 1975 .

[148]  C. Lee Giles,et al.  Extraction of rules from discrete-time recurrent neural networks , 1996, Neural Networks.

[149]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[150]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[151]  Ramana Rao,et al.  Silk from a sow's ear: extracting usable structures from the Web , 1996, CHI.