Superconducting properties of highly oriented Fe1.03Te0.55Se0.45 with excess Fe

[1]  B. Kang,et al.  Three-dimensional superconductivity in nominal composition Fe1.03Se with Tczero up to 10.9 K induced by internal strain , 2010, 1003.5415.

[2]  J. Warren,et al.  Pauli-limited Upper Critical Field of Fe1+yTe1−xSex , 2010, 1001.1751.

[3]  P. Mandal,et al.  The magnetoresistance of a PrFeAsO1−xFy superconductor , 2009 .

[4]  K. Yeh,et al.  Superconducting FeSe1−xTex Single Crystals Grown by Optical Zone-Melting Technique , 2009, 0908.2855.

[5]  T. Matsunaga,et al.  Upper Critical Fields of the 11-System Iron-Chalcogenide Superconductor FeSe0.25Te0.75 , 2009, 0906.5248.

[6]  M. Green,et al.  Tunable (deltapi, deltapi)-type antiferromagnetic order in alpha-Fe(Te,Se) superconductors. , 2009, Physical review letters.

[7]  J. H. Yang,et al.  Charge-carrier localization induced by excess Fe in the superconductor Fe1+yTe1−xSex , 2009, 0904.0824.

[8]  K. Kishio,et al.  Superconductivity at 17 K in (Fe2P2)(Sr4Sc2O6): a new superconducting layered pnictide oxide with a thick perovskite oxide layer , 2009, 0903.3314.

[9]  A. Amato,et al.  Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors , 2009, 0902.3498.

[10]  A. Sefat,et al.  Bulk Superconductivity at 14 K in Single Crystals of Fe1+yTexSe1-x , 2009, 0902.1519.

[11]  Jiangping Hu,et al.  First-order magnetic and structural phase transitions in Fe1+ySexTe1-x , 2008, 0811.0195.

[12]  Lijun Zhang,et al.  Density functional study of excess Fe in Fe1+xTe: Magnetism and doping , 2008, 0810.3274.

[13]  L. Balicas,et al.  Upper critical fields and thermally-activated transport of NdFeAsO 0.7 F 0.3 single crystal , 2008, 0810.2469.

[14]  H. Wen Developments and Perspectives of Iron‐based High‐Temperature Superconductors , 2008 .

[15]  F. Hsu,et al.  Tellurium substitution effect on superconductivity of the α-phase iron selenide , 2008, 0808.0474.

[16]  S. Margadonna,et al.  Crystal structure of the new FeSe(1-x) superconductor. , 2008, Chemical communications.

[17]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[18]  Jiangping Hu,et al.  Spin and lattice structures of single-crystalline Srfe2As2 , 2008, 0807.1077.

[19]  Fengying Li,et al.  The superconductivity at 18 K in LiFeAs system , 2008, 0806.4688.

[20]  D. Christen,et al.  Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields , 2008, Nature.

[21]  Liling Sun,et al.  Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs , 2008 .

[22]  D. Johrendt,et al.  Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe 2 As 2 , 2008, 0805.4021.

[23]  D. Christen,et al.  Very High Field Two-Band Superconductivity in LaFeAsO_0.89F_0.11 , 2008, 0804.0485.

[24]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[25]  S. Dou,et al.  Thermally assisted flux flow and individual vortex pinning in Bi2Sr2Ca2Cu3O10 single crystals grown by the traveling solvent floating zone technique , 2005 .

[26]  A. Zettl,et al.  Effects of carbon doping on superconductivity in magnesium diboride , 2002 .

[27]  V. Sahni,et al.  Magnetic phase diagram of YNi2B2C , 1995 .

[28]  J. Waszczak,et al.  Dissipative flux motion in high-temperature superconductors. , 1990, Physical review. B, Condensed matter.

[29]  Kumar,et al.  Extension of Bean's model for high-Tc superconductors. , 1989, Physical review. B, Condensed matter.

[30]  T. Palstra,et al.  Thermally activated dissipation in Bi/sub 2. 2/Sr/sub 2/Ca/sub 0. 8/Cu/sub 2/O/sub 8+//sub delta/ , 1988 .

[31]  T. Palstra,et al.  Thermally activated dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ , 1988 .

[32]  G. C. Danielson,et al.  Heat capacity of high-purity lanthanum , 1980 .