Best low-rank approximations and Kolmogorov n-widths

We relate the problem of best low-rank approximation in the spectral norm for a matrix $A$ to Kolmogorov $n$-widths and corresponding optimal spaces. We characterize all the optimal spaces for the image of the Euclidean unit ball under $A$ and we show that any orthonormal basis in an $n$-dimensional optimal space generates a best rank-$n$ approximation to $A$. We also present a simple and explicit construction to obtain a sequence of optimal $n$-dimensional spaces once an initial optimal space is known. This results in a variety of solutions to the best low-rank approximation problem and provides alternatives to the truncated singular value decomposition. This variety can be exploited to obtain best low-rank approximations with problem-oriented properties.

[1]  Anders Rantzer,et al.  Low-Rank Optimization With Convex Constraints , 2016, IEEE Transactions on Automatic Control.

[2]  N. Kishore Kumar,et al.  Literature survey on low rank approximation of matrices , 2016, ArXiv.

[3]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[4]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[5]  Athanasios C. Antoulas On the Approximation of Hankel Matrices , 1997 .

[6]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[7]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[8]  N. Higham MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .

[9]  Blake Hallinan,et al.  Recommended for you: The Netflix Prize and the production of algorithmic culture , 2016, New Media Soc..

[10]  Cameron Musco,et al.  Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition , 2015, NIPS.

[11]  Allan Pinkus,et al.  Matrices and n-Widths , 1979 .

[12]  R. Plemmons,et al.  Structured low rank approximation , 2003 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Ivan Markovsky,et al.  Structured low-rank approximation and its applications , 2008, Autom..

[15]  On best uniform approximation by low-rank matrices , 2017 .

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  Avrim Blum,et al.  Foundations of Data Science , 2020 .

[18]  Mark Tygert,et al.  Algorithm 971 , 2017, ACM transactions on mathematical software. Association for Computing Machinery.

[19]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .