Fault Ride-Through Capability Enhancement of PV System with Voltage Support Control Strategy

With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.

[1]  Gehan A. J. Amaratunga,et al.  Analytic Solution to the Photovoltaic Maximum Power Point Problem , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Tomonobu Senjyu,et al.  Design of FRT capability and distributed voltage control of PV generation system , 2011, 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems.

[3]  Vinay Sharma,et al.  Novel application of a PV solar plant as STATCOM during night and day in a distribution utility network , 2011, 2011 IEEE/PES Power Systems Conference and Exposition.

[4]  Junji Tamura,et al.  Low voltage ride through capability enhancement of grid connected large scale photovoltaic system , 2011, IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society.

[5]  Staffan Norrga,et al.  Grid integration aspects of large solar PV installations: LVRT capability and reactive power/voltage support requirements , 2011, 2011 IEEE Trondheim PowerTech.

[6]  H. Nikkhajoei,et al.  Microgrid Protection , 2007, 2007 IEEE Power Engineering Society General Meeting.