On approximate triangular decompositions in dimension zero

Triangular decompositions for systems of polynomial equations with n variables, with exact coefficients, are well developed theoretically and in terms of implemented algorithms in computer algebra systems. However there is much less research concerning triangular decompositions for systems with approximate coefficients. In this paper we discuss the zero-dimensional case of systems having finitely many roots. Our methods depend on having approximations for all the roots, and these are provided by the homotopy continuation methods of Sommese, Verschelde and Wampler. We introduce approximate equiprojectable decompositions for such systems, which represent a generalization of the recently developed analogous concept for exact systems. We demonstrate experimentally the favorable computational features of this new approach, and give a statistical analysis of its error.

[1]  Andrew J. Sommese,et al.  Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..

[2]  André Galligo,et al.  From an approximate to an exact absolute polynomial factorization , 2006, J. Symb. Comput..

[3]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[4]  J. Olsen,et al.  The European Commission , 2020, The European Union.

[5]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933, Nature.

[6]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[7]  Anton Leykin,et al.  PHCmaple : A Maple Interface to the Numerical Homotopy Algorithms in PHCpack ∗ , 2004 .

[8]  Annick Valibouze,et al.  Using Galois Ideals for Computing Relative Resolvents , 1998, J. Symb. Comput..

[9]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[10]  Marc Moreno Maza,et al.  Lifting techniques for triangular decompositions , 2005, ISSAC.

[11]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[12]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[13]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[14]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[15]  Wenjun Wu A zero structure theorem for polynomial-equations-solving and its applications , 1987, EUROCAL.

[16]  K. Nishioka Algebraic differential equations of Clairaut type from the differential-algebraic standpoint , 1979 .

[17]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[18]  Alexei Yu. Uteshev,et al.  On the Bézout Construction of the Resultant , 1999, J. Symb. Comput..

[19]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[20]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[21]  Hans J. Stetter,et al.  The nearest polynomial with a given zero, and similar problems , 1999, SIGS.

[22]  Xin Jin,et al.  Change of order for regular chains in positive dimension , 2008, Theor. Comput. Sci..

[23]  Grégoire Lecerf Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..

[24]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[25]  Dongming Wang,et al.  Symbolic-Numeric Computation , 2007 .

[26]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[27]  Hans J. Stetter,et al.  Singular systems of polynomials , 1998, ISSAC '98.

[28]  Éric Schost,et al.  Sharp estimates for triangular sets , 2004, ISSAC '04.

[29]  Marc Moreno Maza,et al.  Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999, J. Symb. Comput..

[30]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[31]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[32]  Éric Schost,et al.  Complexity results for triangular sets , 2003, J. Symb. Comput..

[33]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[34]  Marc Moreno Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999 .

[35]  M. M. Maza,et al.  On Approximate Linearized Triangular Decompositions , 2007 .

[36]  Lajos Rónyai,et al.  Approximate radical of ideals with clusters of roots , 2006, ISSAC '06.

[37]  Zhonggang Zeng,et al.  Computing the multiplicity structure in solving polynomial systems , 2005, ISSAC.

[38]  Anton Leykin,et al.  Evaluation of Jacobian Matrices for Newton’s Method with Deflation to Approximate Isolated Singular Solutions of Polynomial Systems , 2007 .