Quantile based Tsallis entropy in residual lifetime

Abstract Tsallis entropy is a generalization of type α of the Shannon entropy, that is a nonadditive entropy unlike the Shannon entropy. Shannon entropy may be negative for some distributions, but Tsallis entropy can always be made nonnegative by choosing appropriate value of α . In this paper, we derive the quantile form of this nonadditive’s entropy function in the residual lifetime, namely the residual quantile Tsallis entropy (RQTE) and get the bounds for it, depending on the Renyi’s residual quantile entropy. Also, we obtain relationship between RQTE and concept of proportional hazards model in the quantile setup. Based on the new measure, we propose a stochastic order and aging classes, and study its properties. Finally, we prove characterizations theorems for some well known lifetime distributions. It is shown that RQTE uniquely determines the parent distribution unlike the residual Tsallis entropy.

[1]  A. Khammar,et al.  A quantile-based generalized dynamic cumulative measure of entropy , 2018 .

[2]  N. Unnikrishnan Nair,et al.  Quantile-Based Reliability Analysis , 2009 .

[3]  Asok K. Nanda,et al.  Some results on generalized residual entropy , 2006, Inf. Sci..

[4]  A class of distributions with the linear mean residual quantile function and it’s generalizations , 2013 .

[5]  Lei Yan,et al.  On the dynamic cumulative residual quantile entropy ordering , 2016 .

[6]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[7]  P. Sankaran,et al.  The Govindarajulu Distribution: Some Properties and Applications , 2012 .

[9]  Antonio Di Crescenzo Some results on the proportional reversed hazards model , 2000 .

[10]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[11]  Erich L. Lehmann,et al.  The Power of Rank Tests , 1953 .

[12]  Marshall Freimer,et al.  a study of the generalized tukey lambda family , 1988 .

[13]  Robin K. S. Hankin,et al.  A NEW FAMILY OF NON‐NEGATIVE DISTRIBUTIONS , 2006 .

[14]  H. C. Taneja,et al.  A GENERALIZED ENTROPY-BASED RESIDUAL LIFETIME DISTRIBUTIONS , 2011 .

[15]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[16]  Quantile based entropy function in past lifetime , 2013 .

[17]  P. Sankaran,et al.  Modelling lifetimes by quantile functions using Parzen's score function , 2012 .

[18]  Bruce W. Schmeiser,et al.  An approximate method for generating symmetric random variables , 1972, CACM.

[19]  Alan D. Hutson,et al.  The exponentiated weibull family: some properties and a flood data application , 1996 .

[20]  P. G. Sankaran,et al.  Quantile-based cumulative entropies , 2017 .

[21]  P. G. Sankaran,et al.  Rényi’s residual entropy: A quantile approach , 2014 .

[22]  R. Gupta,et al.  Analysis of lognormal survival data. , 1997, Mathematical biosciences.

[23]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[24]  N. Unnikrishnan Nair,et al.  Kullback–Leibler divergence: A quantile approach , 2016 .

[25]  S. Sunoj,et al.  Quantile based entropy function , 2012 .

[26]  P. G. Sankaran,et al.  A New Quantile Function with Applications to Reliability Analysis , 2016, Commun. Stat. Simul. Comput..

[27]  Pushpa L. Gupta,et al.  Modeling failure time data by lehman alternatives , 1998 .

[28]  E. Parzen Nonparametric Statistical Data Modeling , 1979 .

[29]  N. Nair,et al.  L-moments of residual life , 2010 .

[30]  Stochastic orders using quantile-based reliability functions , 2015 .

[31]  Lei Yan,et al.  Some new results on the Rényi quantile entropy Ordering , 2016 .