The spectral relation between the Cube-Connected Cycles and the Shuffle-Exchange network
暂无分享,去创建一个
[1] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[2] Michael Doob,et al. Spectra of graphs , 1980 .
[3] U. Feige,et al. Spectral Graph Theory , 2015 .
[4] J. Bültermann. A new upper bound for the isoperimetric number of deBruijn Networks , 1997 .
[5] Harold S. Stone,et al. Parallel Processing with the Perfect Shuffle , 1971, IEEE Transactions on Computers.
[6] Andreas Baltz,et al. Spectral Analysis , 2004, Network Analysis.
[7] Béla Bollobás,et al. Modern Graph Theory , 2002, Graduate Texts in Mathematics.
[8] Miguel Angel Fiol,et al. The spectra of wrapped butterfly digraphs , 2003, Networks.
[9] Fan Chung,et al. Spectral Graph Theory , 1996 .
[10] Yuval Rabani,et al. Local divergence of Markov chains and the analysis of iterative load-balancing schemes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[11] S. R. Simanca,et al. On Circulant Matrices , 2012 .
[12] Franco P. Preparata,et al. The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[13] Noga Alon,et al. Routing permutations on graphs via matchings , 1993, SIAM J. Discret. Math..
[14] Robert Elsässer,et al. Sparse topologies with small spectrum size , 2003, Theor. Comput. Sci..
[15] Ian Parberry,et al. On Recurrent and Recursive Interconnection Patterns , 1986, Inf. Process. Lett..
[16] Yi Pan,et al. Lower Bounds for Dynamic Tree Embedding in Bipartite Networks , 1998, J. Parallel Distributed Comput..
[17] Charles Delorme,et al. The Spectrum of de Bruijn and Kautz Graphs , 1998, Eur. J. Comb..
[18] R. Lyndon,et al. Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .
[19] F. Leighton,et al. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .
[20] N. Kalouptsidis,et al. Spectral analysis , 1993 .