The spectral relation between the Cube-Connected Cycles and the Shuffle-Exchange network

We investigate the relation between the spectral sets (i. e., the sets of eigenvalues, disregarding multiplicities) of two d-dimensional networks popular in parallel computing: the Cube-Connected Cycles network CCC(d) and the Shuffle-Exchange network SE(d). We completely characterize their spectral sets. Additionally, it turns out that for any odd d, the SE(d)-eigenvalues set is precisely the same as the CCC(d)-eigenvalues set. For any even d, however, the SE(d)-eigenvalues form a proper subset of the set of CCC(d)-eigenvalues.

[1]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[2]  Michael Doob,et al.  Spectra of graphs , 1980 .

[3]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[4]  J. Bültermann A new upper bound for the isoperimetric number of deBruijn Networks , 1997 .

[5]  Harold S. Stone,et al.  Parallel Processing with the Perfect Shuffle , 1971, IEEE Transactions on Computers.

[6]  Andreas Baltz,et al.  Spectral Analysis , 2004, Network Analysis.

[7]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[8]  Miguel Angel Fiol,et al.  The spectra of wrapped butterfly digraphs , 2003, Networks.

[9]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[10]  Yuval Rabani,et al.  Local divergence of Markov chains and the analysis of iterative load-balancing schemes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[11]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[12]  Franco P. Preparata,et al.  The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[13]  Noga Alon,et al.  Routing permutations on graphs via matchings , 1993, SIAM J. Discret. Math..

[14]  Robert Elsässer,et al.  Sparse topologies with small spectrum size , 2003, Theor. Comput. Sci..

[15]  Ian Parberry,et al.  On Recurrent and Recursive Interconnection Patterns , 1986, Inf. Process. Lett..

[16]  Yi Pan,et al.  Lower Bounds for Dynamic Tree Embedding in Bipartite Networks , 1998, J. Parallel Distributed Comput..

[17]  Charles Delorme,et al.  The Spectrum of de Bruijn and Kautz Graphs , 1998, Eur. J. Comb..

[18]  R. Lyndon,et al.  Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .

[19]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[20]  N. Kalouptsidis,et al.  Spectral analysis , 1993 .