Analysis of interval‐grouped recurrent‐event data using piecewise constant rate functions

We consider situations where subjects in a longitudinal study experience recurrent events. However, the events are observed only in the form of counts for intervals which can vary across subjects. Methods for estimating the mean and rate functions of the recurrent-event processes are presented, based on loglinear regression models which incorporate piecewise-constant baseline rate functions. Robust methods and methods based on mixed Poisson processes are compared in a simulation study and in an example involving superficial bladder tumours in humans. Both approaches provide a simple and effective way to deal with interval-grouped data. Nous considerons des situations ou les sujets d'une etude longitudinale font l'experience d'evenements recurrents. Cependant, les evenements sont observes seulement sous forme de compte des intervalles qui peuvent varier selon les sujets (i.e. Thall et Lachin 1988, Sun et Kalbfleisch 1993, Byar 1980). Des methodes pour estimer les fonctions de moyenne et de taux des procedes d'evenements recurrents sont presentees, basees sur des modeles de regression log-lineaire qui incorporent des fonctions de taux repere constantes par morceau. Des methodes robustes et des methodes fondees sur des precedes de Poisson melanges sont comparees dans une etude de simulation et dans un exemple impliquant des tumeurs superficielles de la vessie chez des humains. Les deux approches fournissent une facon simple et efficace de traiter les donnees groupees par intervalle.

[1]  A random‐effect regression model for medical follow‐up studies , 1997 .

[2]  H. Kaufmann,et al.  Regression Models for Nonstationary Categorical Time Series: Asymptotic Estimation Theory , 1987 .

[3]  P F Thall,et al.  Semiparametric regression analysis for recurrent event interval counts. , 1997, Biometrics.

[4]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[5]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[6]  Richard J. Cook,et al.  Adjusted Score Tests of Homogeneity for Poisson Processes , 1999 .

[7]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[8]  John M. Lachin,et al.  Analysis of Recurrent Events: Nonparametric Methods for Random-Interval Count Data , 1988 .

[9]  P. Bacchetti Estimating the Incubation Period of AIDS by Comparing Population Infection and Diagnosis Patterns , 1990 .

[10]  John D. Kalbfleisch,et al.  The Analysis of Current Status Data on Point Processes , 1993 .

[11]  Louise Ryan,et al.  A Three-state Multiplicative Model for Rodent Tumorigenicity Experiments , 1993 .

[12]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[13]  Jerald F. Lawless,et al.  Some Simple Robust Methods for the Analysis of Recurrent Events , 1995 .

[14]  J Grüger,et al.  The validity of inferences based on incomplete observations in disease state models. , 1991, Biometrics.

[15]  P F Thall,et al.  Mixed Poisson likelihood regression models for longitudinal interval count data. , 1988, Biometrics.

[16]  Jerald F. Lawless,et al.  Estimation of Rate and Mean Functions from Truncated Recurrent Event Data , 1996 .

[17]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[18]  Norman E. Breslow,et al.  Tests of Hypotheses in Overdispersed Poisson Regression and other Quasi-Likelihood Models , 1990 .

[19]  Jerald F. Lawless,et al.  The Analysis of Recurrent Events for Multiple Subjects , 1995 .

[20]  Nicholas P. Jewell,et al.  Nonparametric Estimation for a form of Doubly Censored Data, with Application to Two Problems in AIDS , 1994 .

[21]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[22]  D P Byar,et al.  The Veterans Administration Study of Chemoprophylaxis for Recurrent Stage I Bladder Tumours: Comparisons of Placebo, Pyridoxine and Topical Thiotepa , 1980 .

[23]  P. Thall,et al.  Some covariance models for longitudinal count data with overdispersion. , 1990, Biometrics.

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  J. Lawless Regression Methods for Poisson Process Data , 1987 .