A Convex Sum-of-Squares Approach to Analysis, State Feedback and Output Feedback Control of Parabolic PDEs

We present an optimization-based framework for analysis and control of linear parabolic partial differential equations (PDEs) with spatially varying coefficients without discretization or numerical approximation. For controller synthesis, we consider both full-state feedback and point observation (output feedback). The input occurs at the boundary (point actuation). We use positive-definite matrices to parameterize positive Lyapunov functions and polynomials to parameterize controller and observer gains. We use duality and an invertible state variable transformation to convexify the controller synthesis problem. Finally, we combine our synthesis condition with the Luenberger observer framework to express the output feedback controller synthesis problem as a set of LMI/SDP constraints. We perform an extensive set of numerical experiments to demonstrate the accuracy of the conditions and to prove the necessity of the Lyapunov structures chosen. We provide numerical and analytical comparisons with alternative approaches to control, including Sturm–Liouville theory and backstepping. Finally, we use numerical tests to show that the method retains its accuracy for alternative boundary conditions.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part III: Output feedback examples with swapping identifiers , 2007, Autom..

[3]  Antonis Papachristodoulou,et al.  Using polynomial semi-separable kernels to construct infinite-dimensional Lyapunov functions , 2008, 2008 47th IEEE Conference on Decision and Control.

[4]  Minyue Fu,et al.  Pole placement via static output feedback is NP-hard , 2004, IEEE Transactions on Automatic Control.

[5]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[6]  Yury Orlov,et al.  Advanced H∞ Control: Towards Nonsmooth Theory and Applications , 2014 .

[7]  Emilia Fridman,et al.  An LMI approach to Hinfinity boundary control of semilinear parabolic and hyperbolic systems , 2009, Autom..

[8]  Christopher I. Byrnes,et al.  Example of output regulation for a system with unbounded inputs and outputs , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[9]  A. Papachristodoulou,et al.  On the Analysis of Systems Described by Classes of Partial Differential Equations , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[10]  Aditya Gahlawat,et al.  Designing observer-based controllers for PDE systems: A heat-conducting rod with point observation and boundary control , 2011, IEEE Conference on Decision and Control and European Control Conference.

[11]  George Weiss,et al.  Transfer Functions of Regular Linear Systems. Part I: Characterizations of Regularity , 1994 .

[12]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[13]  Miroslav Krstic,et al.  Adaptive Boundary Control for Unstable Parabolic PDEs—Part I: Lyapunov Design , 2008, IEEE Transactions on Automatic Control.

[14]  R. Triggiani,et al.  Control and Stabilization of Distributed Parameter Systems; Theoretical and Computational Aspects , 1994 .

[15]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part II: Estimation-based designs , 2007, Autom..

[16]  Bert van Keulen,et al.  H? Control for Distributed Parameter Systems: A State-Space Approach , 2012 .

[17]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[18]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[19]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[20]  M. Balas FEEDBACK CONTROL OF LINEAR DIFFUSION PROCESSES , 1979 .

[21]  Aditya Gahlawat Analysis and control of parabolic partial differential equations with application to tokamaks using sum-of-squares polynomials , 2015 .

[22]  A. Tits,et al.  Globally convergent algorithms for robust pole assignment by state feedback , 1996, IEEE Trans. Autom. Control..

[23]  Denis Dochain,et al.  Sturm-Liouville systems are Riesz-spectral systems , 2003 .

[24]  Andrey Smyshlyaev,et al.  Adaptive Control of Parabolic PDEs , 2010 .

[25]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[26]  J. Hale,et al.  Stability of Motion. , 1964 .

[27]  O. Staffans Quadratic Optimal Control of Well-Posed Linear Systems , 1999 .

[28]  Olof J. Staffans,et al.  Quadratic optimal control of well-posed linear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[29]  Christophe Prieur,et al.  A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients , 2013, IEEE Transactions on Automatic Control.

[30]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[31]  TanakaKazuo,et al.  A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems , 2009 .

[32]  M. G. Kreïn Stability of solutions of differential equations in Banach space , 2007 .

[33]  Matthew M. Peet LMI parametrization of Lyapunov functions for infinite-dimensional systems: A framework , 2014, 2014 American Control Conference.

[34]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[35]  Ruth F. Curtain,et al.  Exponential stabilization of well-posed systems by colocated feedback , 2006, SIAM J. Control. Optim..

[36]  J. Hale Functional Differential Equations , 1971 .

[37]  M. Kreĭn,et al.  Stability of Solutions of Differential Equations in Banach Spaces , 1974 .

[38]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[39]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[40]  Kazuo Tanaka,et al.  A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems , 2009, IEEE Transactions on Fuzzy Systems.

[41]  O. Staffans Quadratic optimal control of stable well-posed linear systems , 1997 .

[42]  Ulrich Eggers,et al.  Introduction To Infinite Dimensional Linear Systems Theory , 2016 .

[43]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[44]  George Weiss,et al.  Admissible observation operators for linear semigroups , 1989 .

[45]  E. Joffrin,et al.  A control-oriented model of the current profile in tokamak plasma , 2007 .

[46]  Israel Gohberg,et al.  Time varying linear systems with boundary conditions and integral operators. I. The transfer operator and its properties , 1984 .

[47]  Brigitte d'Andréa-Novel,et al.  Stabilization of a rotating body beam without damping , 1998, IEEE Trans. Autom. Control..

[48]  R. Datko Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .

[49]  Martin Weiss,et al.  Optimal control of stable weakly regular linear systems , 1997, Math. Control. Signals Syst..

[50]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[51]  Miroslav Krstic,et al.  Lyapunov Adaptive Boundary Control for Parabolic PDEs with Spatially Varying Coefficients , 2006, 2006 American Control Conference.

[52]  Georges Bastin,et al.  A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws , 2004, CDC.

[53]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[54]  Georges Bastin,et al.  Dissipative Boundary Conditions for One-Dimensional Nonlinear Hyperbolic Systems , 2008, SIAM J. Control. Optim..

[55]  Frédéric Gouaisbaut,et al.  On the Use of the Wirtinger Inequalities for Time-Delay Systems , 2012, TDS.

[56]  Kirsten Morris,et al.  Approximation of low rank solutions for linear quadratic control of partial differential equations , 2010, Comput. Optim. Appl..

[57]  Y. Egorov,et al.  On Spectral Theory of Elliptic Operators , 1996 .

[58]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[59]  K. A. Morrisy Design of Finite-dimensional Controllers for Innnite-dimensional Systems by Approximation , 1994 .

[60]  Miroslav Krstic,et al.  Stability of partial difference equations governing control gains in infinite-dimensional backstepping , 2004, Syst. Control. Lett..

[61]  Emilia Fridman,et al.  An LMI approach toH∞ boundary control of semilinear parabolic and hyperbolic systems , 2009 .