Regime switching volatility calibration by the Baum-Welch method

Regime switching volatility models provide a tractable method of modelling stochastic volatility. Currently the most popular method of regime switching calibration is the Hamilton filter. We propose using the Baum-Welch algorithm, an established technique from Engineering, to calibrate regime switching models instead. We demonstrate the Baum-Welch algorithm and discuss the significant advantages that it provides compared to the Hamilton filter. We provide computational results of calibrating and comparing the performance of the Baum-Welch and the Hamilton filter to S&P 500 and Nikkei 225 data, examining their performance in and out of sample.

[1]  Kenneth Dixon,et al.  Introduction to Stochastic Modeling , 2011 .

[2]  Daniele Toscani,et al.  Hidden Markov Models for Scenario Generation , 2007 .

[3]  Toshiki Honda,et al.  Optimal portfolio choice for unobservable and regime-switching mean returns , 2003 .

[4]  Myung-Jig Kim,et al.  New index of coincident indicators: A multivariate Markov switching factor model approach , 1995 .

[5]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[6]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[7]  Pedro L. Valls Pereira,et al.  How Persistent is Stock Return Volatility? An Answer with Markov Regime Switching Stochastic Volatility Models , 2007 .

[8]  Marco Gori,et al.  A survey of hybrid ANN/HMM models for automatic speech recognition , 2001, Neurocomputing.

[9]  Campbell R. Harvey,et al.  Growth Volatility and Financial Liberalization , 2004 .

[10]  Tara Salih,et al.  Modeling and analysis of queuing handoff calls in single and two-tier cellular networks , 2006, Comput. Commun..

[11]  Petros Boufounos,et al.  Basecalling using hidden Markov models , 2004, J. Frankl. Inst..

[12]  J. Idier,et al.  Penalized Maximum Likelihood Estimation for Normal Mixture Distributions , 2003 .

[13]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[14]  Stephen E. Levinson,et al.  Mathematical Models for Speech Technology , 2005 .

[15]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[16]  David Saunders,et al.  Portfolio optimization when asset returns have the Gaussian mixture distribution , 2008, Eur. J. Oper. Res..

[17]  Mary R. Hardy,et al.  A Regime-Switching Model of Long-Term Stock Returns , 2001 .

[18]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[19]  Zacharias Psaradakis,et al.  Finite-sample properties of the maximum likelihood estimator in autoregressive models with Markov switching , 1998 .

[20]  Martin Sola,et al.  A test for volatility spillovers , 2002 .

[21]  Jr. G. Forney,et al.  Viterbi Algorithm , 1973, Encyclopedia of Machine Learning.

[22]  Thomas H. McCurdy,et al.  Duration-Dependent Transitions in a Markov Model of U.S. GNP Growth , 1994 .

[23]  Sovan Mitra,et al.  Regime Switching Stochastic Volatility with Perturbation Based Option Pricing , 2009, 0904.1756.

[24]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[25]  Didier Piau,et al.  A computational prediction of isochores based on hidden Markov models. , 2006, Gene.

[26]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[27]  Nianjun Liu,et al.  Effect of initial HMM choices in multiple sequence training for gesture recognition , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[28]  Carol Alexander,et al.  Regime dependent determinants of credit default swap spreads , 2008 .

[29]  Robert J. Elliott,et al.  An application of hidden Markov models to asset allocation problems , 1997, Finance Stochastics.

[30]  Chris Brooks,et al.  Testing for non-stationarity and cointegration allowing for the possibility of a structural break: an application to EuroSterling interest rates , 2002 .

[31]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[32]  Soosung Hwang How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations , 2004 .

[33]  Sovan Mitra,et al.  A review of volatility and option pricing , 2009, 0904.1292.

[34]  James D. Hamilton A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions , 1991 .

[35]  N. S. Barnett,et al.  Private communication , 1969 .

[36]  Soosung Hwang How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations , 2004 .