Minimum hardware requirements for hybrid quantum–classical DMFT

We numerically emulate noisy intermediate-scale quantum (NISQ) devices and determine the minimal hardware requirements for two-site hybrid quantum-classical dynamical mean-field theory (DMFT). We develop a circuit recompilation algorithm which significantly reduces the number of quantum gates of the DMFT algorithm and find that the quantum-classical algorithm converges if the two-qubit gate fidelities are larger than 99%. The converged results agree with the exact solution within 10%, and perfect agreement within noise-induced error margins can be obtained for two-qubit gate fidelities exceeding 99.9%. By comparison, the quantum-classical algorithm without circuit recompilation requires a two-qubit gate fidelity of at least 99.999% to achieve perfect agreement with the exact solution. We thus find quantum-classical DMFT calculations can be run on the next generation of NISQ devices if combined with the recompilation techniques developed in this work.

[1]  Philipp Werner,et al.  Hybridization expansion impurity solver: General formulation and application to Kondo lattice and two-orbital models , 2006 .

[2]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[3]  Jun Li,et al.  Hybrid Quantum-Classical Approach to Quantum Optimal Control. , 2016, Physical review letters.

[4]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[5]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[6]  T. Bækkegaard,et al.  Realization of efficient quantum gates with a superconducting qubit-qutrit circuit , 2018, Scientific Reports.

[7]  Pavel Lougovski,et al.  Quantum-classical simulation of two-site dynamical mean-field theory on noisy quantum hardware , 2019, Quantum Science and Technology.

[8]  A. I. Lichtenstein,et al.  Continuous-time quantum Monte Carlo method for fermions , 2005 .

[9]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  D. Vollhardt,et al.  Correlated Lattice Fermions in High Dimensions , 1989 .

[11]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[12]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Matthew B. Hastings,et al.  Hybrid quantum-classical approach to correlated materials , 2015, 1510.03859.

[15]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[16]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[17]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[18]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[19]  J. Kinnunen,et al.  Momentum-resolved spectroscopy of a Fermi liquid , 2014, Scientific Reports.

[20]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[21]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[22]  Kunal Sharma,et al.  Noise resilience of variational quantum compiling , 2019, New Journal of Physics.

[23]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[24]  M. Potthoff Two-site dynamical mean-field theory , 2001 .

[25]  R. Duncan,et al.  Dynamical mean field theory algorithm and experiment on quantum computers , 2019 .

[26]  Kristjan Haule Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base , 2007 .

[27]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[28]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[29]  Ekkehard Lange Renormalized Versus Unrenormalized Perturbation-Theoretical Approaches to the Mott Transition , 1998 .

[30]  M. Benedetti,et al.  Quantum circuit structure learning , 2019, 1905.09692.

[31]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[32]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[33]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[34]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[35]  Stefano Mancini,et al.  Quantum stabilizer codes for correlated and asymmetric depolarizing errors , 2010, 1005.3374.

[36]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[37]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[38]  S. R. Clark,et al.  Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics , 2015, Scientific Reports.

[39]  Enrique Solano,et al.  Few-qubit quantum-classical simulation of strongly correlated lattice fermions , 2016, 1606.04839.

[40]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[41]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[42]  Marcos Rigol,et al.  Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model , 2016, Science.

[43]  J. Paz,et al.  Quantum gate arrays can be programmed to evaluate the expectation value of any operator , 2003, quant-ph/0306143.

[44]  Tyson Jones,et al.  Quantum compilation and circuit optimisation via energy dissipation , 2018 .

[45]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[46]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[47]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[48]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[49]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .