Tensor absolute value equations

This paper is concerned with solving some structured multi-linear systems, which are called tensor absolute value equations. This kind of absolute value equations is closely related to tensor complementarity problems and is a generalization of the well-known absolute value equations in the matrix case. We prove that tensor absolute value equations are equivalent to some special structured tensor complementary problems. Some sufficient conditions are given to guarantee the existence of solutions for tensor absolute value equations. We also propose a Levenberg-Marquardt-type algorithm for solving some given tensor absolute value equations and preliminary numerical results are reported to indicate the efficiency of the proposed algorithm.

[1]  Zheng-Hai Huang,et al.  Formulating an n-person noncooperative game as a tensor complementarity problem , 2016, Comput. Optim. Appl..

[2]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[3]  L. Qi,et al.  M-tensors and nonsingular M-tensors , 2013, 1307.7333.

[4]  C.Ling,et al.  Some properties on Pareto-eigenvalues of higher-order tensors , 2015 .

[5]  Liqun Qi,et al.  Eigenvalue analysis of constrained minimization problem for homogeneous polynomial , 2016, J. Glob. Optim..

[6]  Xiao-Qing Jin,et al.  Tensor Methods for Solving Symmetric $${\mathcal {M}}$$M-tensor Systems , 2017, J. Sci. Comput..

[7]  Yimin Wei,et al.  Positive-Definite Tensors to Nonlinear Complementarity Problems , 2015, J. Optim. Theory Appl..

[8]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[9]  Alexander Shapiro,et al.  Second Order Optimality Conditions Based on Parabolic Second Order Tangent Sets , 1999, SIAM J. Optim..

[10]  Yong Wang,et al.  Exceptionally regular tensors and tensor complementarity problems , 2015, Optim. Methods Softw..

[11]  L. Qi,et al.  Tensor Analysis: Spectral Theory and Special Tensors , 2017 .

[12]  A. Fischer A special newton-type optimization method , 1992 .

[13]  Yimin Wei,et al.  Theory and Computation of Tensors: Multi-Dimensional Arrays , 2016 .

[14]  Yong Wang,et al.  Global Uniqueness and Solvability for Tensor Complementarity Problems , 2015, J. Optim. Theory Appl..

[15]  Liqun Qi,et al.  Tensor Complementarity Problem and Semi-positive Tensors , 2015, J. Optim. Theory Appl..

[16]  Liqun Qi,et al.  Properties of Some Classes of Structured Tensors , 2014, J. Optim. Theory Appl..

[17]  Liqun Qi,et al.  M-Tensors and Some Applications , 2014, SIAM J. Matrix Anal. Appl..

[18]  Liqun Qi,et al.  A Strongly Semismooth Integral Function and Its Application , 2003, Comput. Optim. Appl..

[19]  Francisco Facchinei,et al.  A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..

[20]  Defeng Sun,et al.  On NCP-Functions , 1999, Comput. Optim. Appl..

[21]  Yimin Wei,et al.  Solving Multi-linear Systems with $$\mathcal {M}$$M-Tensors , 2016, J. Sci. Comput..

[22]  Kok Lay Teo,et al.  A Superlinearly Convergent Method for a Class of Complementarity Problems with Non-Lipschitzian Functions , 2010, SIAM J. Optim..

[23]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[24]  O. Mangasarian,et al.  Absolute value equations , 2006 .

[25]  Naihua Xiu,et al.  The sparsest solutions to Z-tensor complementarity problems , 2015, Optim. Lett..

[26]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[27]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[28]  M. Ng,et al.  Solving sparse non-negative tensor equations: algorithms and applications , 2015 .

[29]  Defeng Sun,et al.  Strong Semismoothness of the Fischer-Burmeister SDC and SOC Complementarity Functions , 2005, Math. Program..

[30]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[31]  Yisheng Song,et al.  Properties of Solution Set of Tensor Complementarity Problem , 2015, J. Optim. Theory Appl..

[32]  Olvi L. Mangasarian,et al.  Knapsack feasibility as an absolute value equation solvable by successive linear programming , 2009, Optim. Lett..

[33]  Chen Ling,et al.  On the cone eigenvalue complementarity problem for higher-order tensors , 2015, Comput. Optim. Appl..

[34]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[35]  Yi-min Wei,et al.  Solving Multilinear Systems with M-Tensors , 2016 .

[36]  Tan Zhang,et al.  A survey on the spectral theory of nonnegative tensors , 2013, Numer. Linear Algebra Appl..

[37]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[38]  Olvi L. Mangasarian,et al.  Absolute value programming , 2007, Comput. Optim. Appl..

[39]  Chen Ling,et al.  Higher-degree eigenvalue complementarity problems for tensors , 2015, Comput. Optim. Appl..

[40]  Liqun Qi,et al.  A semismooth Newton method for tensor eigenvalue complementarity problem , 2016, Comput. Optim. Appl..